[1]

N. Alon, P. Frankl and V. Rödl: Geometrical realizations of set systems and probabilistic communication complexity, in *Proceedings of the 26th Symposium on Foundations of Computer Science*, pages 277–280, IEEE Computer Society Press, 1985.

[2]

N. Alon and

J. H. Spencer:

*The probabilistic method*, Wiley, New York, second edition, 2000.

MATH [3]

R. I. Arriaga and S. Vempala: An algorithmic theory of learning: Robust concepts and random projection, in *IEEE Symposium on Foundations of Computer Science*, pages 616–623, 1999.

[4]

S. Ben-David, N. Eiron and H. U. Simon: Limitations of learning via embeddings in Euclidean half-spaces, in *14th Annual Conference on Computational Learning Theory, COLT 2001 and 5th European Conference on Computational Learning Theory, EuroCOLT 2001, Amsterdam, The Netherlands, July 2001, Proceedings*, volume **2111**, pages 385–401, Springer, Berlin, 2001.

[5]

R. Bhatia: *Matrix Analysis*, Springer-Verlag, New York, 1997.

[6]

C. J. C. Burges: A tutorial on support vector machines for pattern recognition,

*Data Mining and Knowledge Discovery*
**2(2)** (1998), 121–167.

CrossRef [7]

J. Forster: A linear lower bound on the unbounded error probabilistic communication complexity, in *SCT: Annual Conference on Structure in Complexity Theory*, 2001.

[8]

J. Forster, M. Krause, S. V. Lokam, R. Mubarakzjanov, N. Schmitt and H. U. Simon: Relations between communication complexity, linear arrangements, and computational complexity; in *Proceedings of the 21st Conference on Foundations of Software Technology and Theoretical Computer Science*, pages 171–182, 2001.

[9]

J. Forster, N. Schmitt and H. U. Simon: Estimating the optimal margins of embeddings in Euclidean half spaces, in *14th Annual Conference on Computational Learning Theory, COLT 2001 and 5th European Conference on Computational Learning Theory, EuroCOLT 2001, Amsterdam, The Netherlands, July 2001, Proceedings*, volume **2111**, pages 402–415, Springer, Berlin, 2001.

[10]

J. Friedman: A proof of alon’s second eigenvalue conjecture, in *Proceedings of the thirty-fifth annual ACM symposium on Theory of computing*, pages 720–724, ACM Press, 2003.

[11]

F. John: Extremum problems with inequalities as subsidiary conditions, *Studies and assays presented to R. Courant in his 60th birthday*, pages 187–204, 1948.

[12]

W. B. Johnson and J. Lindenstrauss: Extensions of lipshitz mappings into a Hilbert space, in *Conference in modern analysis and probability (New Haven, Conn., 1982)*, pages 189–206, Amer. Math. Soc., Providence, RI, 1984.

[13]

J. Kahn, J. Komlós and

E. Szemerédi: On the probability that a random ±1-matrix is singular,

*Journal of the American Mathematical Society*
**8(1)** (1995), 223–240.

CrossRefMathSciNetMATH [14]

B. Kashin and

A. Razborov: Improved lower bounds on the rigidity of Hadamard matrices,

*Mathematical Notes*
**63(4)** (1998), 471–475.

CrossRefMathSciNetMATH [15]

E. Kushilevitz and N. Nisan: *Communication Complexity*, Cambride University Press, 1997.

[16]

S. V. Lokam: Spectral methods for matrix rigidity with applications to size-depth tradeoffs and communication complexity, in *IEEE Symposium on Foundations of Computer Science*, pages 6–15, 1995.

[17]

A. Lobotzky, R. Phillips and

P. Sarnak: Ramanujan graphs,

*Combinatorica*
**8(3)** (1988), 261–277.

CrossRefMathSciNet [18]

G. A. Margulis: Explicit constructions of expanders,

*Problemy Peredaci Informacii*
**9(4)** (1973), 71–80.

MathSciNetMATH [19]

A. Nilli: On the second eigenvalue of a graph,

*Discrete Math.*
**91(2)** (1991), 207–210.

CrossRefMathSciNetMATH [20]

N. Nisan and A. Wigderson: On rank vs. communication complexity, in *IEEE Symposium on Foundations of Computer Science*, pages 831–836, 1994.

[21]

R. Paturi and

J. Simon: Probabilistic communication complexity,

*Journal of Computer and System Sciences*
**33** (1986), 106–123.

CrossRefMathSciNetMATH [22]

G. Pisier: *Factorization of linear operators and geometry of Banach spaces*, volume **60** of *CBMS Regional Conference Series in Mathematics*. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1986.

[23]

P. Pudlák and

V. Rödl: Some combinatorial-algebraic problems from complexity theory,

*Discrete Mathematics*
**136** (1994), 253–279.

CrossRefMathSciNetMATH [24]

M. A. Shokrollahi, D. A. Spielman and

V. Stemann: A remark on matrix rigidity,

*Information Processing Letters*
**64(6)** (1997), 283–285.

CrossRefMathSciNet [25]

M. Talagrand: Concentration of measures and isoperimetric inequalities in product spaces,

*Publications Mathematiques de l’I.H.E.S.*
**81** (1996), 73–205.

CrossRef [26]

T. Tao and

V. Vu: On the singularity probability of random Bernoulli matrices,

*Journal of the American Mathematical Society*
**20(3)** (2007), 603–628.

CrossRefMathSciNetMATH [27]

N. Tomczak-Jaegermann:

*Banach-Mazur distances and finite-dimensional operator ideals*, volume

**38** of

*Pitman Monographs and Surveys in Pure and Applied Mathematics*, Longman Scientific & Technical, Harlow, 1989.

MATH [28]

L. G. Valiant: Graph-theoretic arguments in low level complexity, in

*Proc. 6th MFCS*, volume

**53**, pages 162–176. Springer-Verlag LNCS, 1977.

MathSciNet [29]

V. N. Vanik: *The Nature of Statistical Learning Theory*, Springer-Verlag, New York, 1999.