Combinatorica

, Volume 25, Issue 2, pp 143–186

Recognizing Berge Graphs

  • Maria Chudnovsky*
  • Gérard Cornuéjols**
  • Xinming Liu†
  • Paul Seymour†
  • Kristina Vušković‡
Original Paper

DOI: 10.1007/s00493-005-0012-8

Cite this article as:
Chudnovsky*, M., Cornuéjols**, G., Liu†, X. et al. Combinatorica (2005) 25: 143. doi:10.1007/s00493-005-0012-8

A graph is Berge if no induced subgraph of G is an odd cycle of length at least five or the complement of one. In this paper we give an algorithm to test if a graph G is Berge, with running time O(|V (G)|9). This is independent of the recent proof of the strong perfect graph conjecture.

Mathematics Subject Classification (2000):

05C17

Copyright information

© János Bolyai Mathematical Society 2005

Authors and Affiliations

  • Maria Chudnovsky*
    • 1
  • Gérard Cornuéjols**
    • 2
    • 3
  • Xinming Liu†
    • 4
  • Paul Seymour†
    • 5
  • Kristina Vušković‡
    • 6
  1. 1.Mathematics DeptPrinceton University, Fine HallPrinceton, NJ 08544USA
  2. 2.Tepper School of BusinessCarnegie Mellon UniversityPittsburgh, PA 15213USA
  3. 3.Laboratoire d’InformatiqueFondamentale Faculté des Sciences de LuminyMarseilleFrance
  4. 4.Tepper School of BusinessCarnegie Mellon UniversityPittsburgh, PA 15213USA
  5. 5.Mathematics DeptPrinceton University, Fine HallPrinceton, NJ 08544USA
  6. 6.School of ComputingUniversity of LeedsLeeds LS2 9JTUK