Original Paper

Combinatorica

, Volume 23, Issue 4, pp 613-632

Local Tree-Width, Excluded Minors, and Approximation Algorithms

  • Martin GroheAffiliated withHumboldt-Universität zu Berlin, Institut für Informatik Email author 

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

The local tree-width of a graph G=(V,E) is the function ltw G :ℕ→ℕ that associates with every r∈ℕ the maximal tree-width of an r-neighborhood in G. Our main grapht heoretic result is a decomposition theorem for graphs with excluded minors, which says that such graphs can be decomposed into trees of graphs of almost bounded local tree-width.

As an application of this theorem, we show that a number of combinatorial optimization problems, suchas Minimum Vertex Cover, Minimum Dominating Set, and Maximum Independent Set have a polynomial time approximation scheme when restricted to a class of graphs with an excluded minor.

Mathematics Subject Classification (2000):

05C83 05C85 68W25