Skip to main content
Log in

A statistical approach to bioclimatic trend detection in the airborne pollen records of Catalonia (NE Spain)

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Airborne pollen records are a suitable indicator for the study of climate change. The present work focuses on the role of annual pollen indices for the detection of bioclimatic trends through the analysis of the aerobiological spectra of 11 taxa of great biogeographical relevance in Catalonia over an 18-year period (1994–2011), by means of different parametric and non-parametric statistical methods. Among others, two non-parametric rank-based statistical tests were performed for detecting monotonic trends in time series data of the selected airborne pollen types and we have observed that they have similar power in detecting trends. Except for those cases in which the pollen data can be well-modeled by a normal distribution, it is better to apply non-parametric statistical methods to aerobiological studies. Our results provide a reliable representation of the pollen trends in the region and suggest that greater pollen quantities are being liberated to the atmosphere in the last years, specially by Mediterranean taxa such as Pinus, Total Quercus and Evergreen Quercus, although the trends may differ geographically. Longer aerobiological monitoring periods are required to corroborate these results and survey the increasing levels of certain pollen types that could exert an impact in terms of public health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alarcón M, Ávila A, Cunillera J (2011) Canvi climàtic: evidències científiques i impactes. UPC, Barcelona

    Google Scholar 

  • Allue Andrade JL (1990) Atlas fitoclimático de España. Ministerio de Agricultura, Pesca y Alimentación, Madrid

    Google Scholar 

  • Avolio E, Pasqualoni L, Federico S, Fornaciari M, Bonofiglio T, Orlandi F, Bellecci C, Romano B (2008) Correlation between large-scale atmospheric fields and the olive pollen seaton in Central Italy. Int J Biometeorol 52:787–796. doi:10.1007/s00484-008-0172-5

    Google Scholar 

  • Bakkenes M, Alkemade JRM, Ihle F, Leemans R, Latour JB (2002) Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Glob Chang Biol 8:390–407. doi:10.1046/j.1354-1013.2001.00467.x

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (2008) Climate change and water. Technical paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Geneva

    Google Scholar 

  • Belmonte J, Roure JM (1991) Characteristics of aeropollen dynamics at several localities in Spain. Grana 30:364–372. doi:10.1080/00173139109431992

    Google Scholar 

  • Bortenschlager S, Bortenschlager I (2005) Altering airborne pollen concentrations due to the global warming. A comparative analysis of airborne pollen records from Innsbruck and Obergurgl (Austria) for the period 1980–2001. Grana 44:172–180. doi:10.1080/00173130410005582

    Google Scholar 

  • Bullock JM, White SM, Prudhomme C, Tansey C, Perea R, Hooftman DAP (2012) Modelling spread of British wind-dispersed plants under future wind speeds in changing climate. J Ecol 100:104–115. doi:10.111/j.1365-2745.2011.01910.x

    Google Scholar 

  • Clot B (2003) Trends in airborne pollen: an overview of 21 years of data in Neuchâtel (Switzerland). Aerobiologia 19:227–234. doi:10.1023/B:AERO.0000006572.53105.17

    Google Scholar 

  • Confalonieri U, Menne B, Akhtar R, Ebi KL, Hauengue M, Kovats RS, Revich B, Woodward A (2007) Human health. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CJ (eds) Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC) of the United Nations. Cambridge University Press, Cambridge, pp 391–431

    Google Scholar 

  • Damialis A, Halley JM, Gioulekas D, Vokou D (2007) Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece. Atmos Environ 41:7011–7021. doi:10.1016/j.atmosenv.2007.05.009

    Google Scholar 

  • Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332:53–58. doi:10.1126/science.1200303

    Google Scholar 

  • Durkalski VL, Palesch YY, Lipsitz SR (2003) Analysis of clustered matched-pair data. Stat Med 22:2417–2428. doi:10.1002/sim.1438

    Google Scholar 

  • Emberlin J, Jäeger S, Domínguez E, Galán C, Hodal L, Mandrioli P, Rantio-Lehtimäki A, Savage M, Spieksma FT, Barlett C (2000) Temporal and geographical variations in grass pollen seasons in areas of western Europe: an analysis of season dates at sites of the European pollen information system. Aerobiologia 16:373–379

    Article  Google Scholar 

  • Emberlin J, Detandt M, Gehrig R, Jaeger S, Nolard N, Rantio-Lehtimäki A (2002) Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe. Int J Biometeorol 46:159–170. doi:10.1007/s00484-002-0139-x

    Google Scholar 

  • Emberlin J, Smith M, Close R, Adams-Groom B (2007a) Changes in the pollen seasons of the early flowering trees Alnus spp. and Corylus spp. in Worcester United Kingdom 1996–2005. Int J Biometeorol 51:181–191. doi:10.1007/s00484-006-0059-2

    Google Scholar 

  • Emberlin J, Laaidi M, Detandt M, Gherig R, Jaeger S, Myszkowska D, Nolard N, Rantio-Lehtimäki A, Stach A (2007b) Changement climatique et évolution du contenu pollinique dans l’air dans sept pays européens: exemple du bouleau. Rev Fr Allergol 47:57–63. doi:10.1016/j.allerg.2006.11.005

    Google Scholar 

  • Fernández-Martínez M, Belmonte J, Espelta JM (2012) Masting in oaks: disentangling the effect of flowering phenology, airborne pollen load and drought. Acta Oecol 43:51–59. doi:10.1016/j.actao.2012.05.006

    Google Scholar 

  • Frei T (1998) The effects of climate change in Switzerland 1969–1996 on airborne pollen quantities from hazel, birch and grass. Grana 37:172–179. doi:10.1080/00173139809362662

    Google Scholar 

  • Galán C, García-Mozo H, Vázquez L, Ruiz-Valenzuela L, Díaz de la Guardia C, Trigo Pérez M (2005) Heat requirement for the onset of the Olea europaea L. pollen season in several places of Andalusia region and the effect of the expected future climate change. Int J Biometeorol 49:184–188. doi:10.1007/s00484-004-0223-5

  • Galán C, Cariñanos P, Alcázar P, Domínguez E (2007) Manual de calidad y gestión de la red Española de aerobiología. Servicio de Publicaciones de la Universidad de Córdoba, Córdoba

    Google Scholar 

  • García-Mozo H, Galán C, Jato V, Belmonte J, Díaz de la Guardia C, Fernández D, Gutiérrez M, Aira MJ, Roure JM, Ruiz L, Trigo MM, Domínguez-Vilches E (2006) Quercus pollen season dynamics in the Iberian Peninsula: response to meteorological parameters and possible consequences of climate change. Ann Agric Environ Med 13:209–224

    Google Scholar 

  • García-Mozo H, Chuine I, Aira MJ, Belmonte J, Bermejo D, Díaz de la Guardia C, Elvira B, Gutiérrez M, Rodríguez-Rajo J, Ruiz L, Trigo MM, Tormo R, Valencia R, Galán C (2008) Regional phenological models for forecasting the start and peak of the Quercus pollen season in Spain. Agric Forest Manage 148:372–380. doi:10.1016/j.agrformet.2007.09.013

  • Gilbert RO (1987) Statistical methods for environmental pollution monitoring. Wiley, New York

    Google Scholar 

  • Hirst JM (1952) An automatic volumetric spore-trap. Ann Appl Biol 38:257–265

    Article  Google Scholar 

  • Hodges JL, Lehmann EL (1963) Estimation of location based on ranks. Ann Math Statist 34 598–611. doi:10.1214/aoms/1177704172

  • Jäeger S, Nilsson S, Berggren B, Pessi AM, Helander M, Ramfjord H (1996) Trends of some airborne tree pollen in the Nordic countries and Austria, 1980–1993. A comparison between Stockholm, Trondheim, Turku and Vienna. Grana 35:171–178. doi:10.1080/00173139609429078

    Google Scholar 

  • Jato V, Rodríguez-Rajo FJ, Aira MJ (2007) Use of phenological and pollen-production data for interpreting atmospheric birch pollen curves. Ann Agric Environ Med 14:271–280

    Google Scholar 

  • Jato V, Rodríguez-Rajo FJ, Seijo MC, Aira MJ (2009) Poaceae pollen in Galicia (NW Spain): characterisation and recent trends in atmospheric pollen season. Int J Biometeorol 53:333–344. doi:10.1007/s00484-009-0220-9

    Google Scholar 

  • Kendall MG (1938) A new measure of rank correlation. Biometrika 30:227–233

    Google Scholar 

  • Kendall MG (1975) Rank correlation methods. Hafner, New York

    Google Scholar 

  • Kendall MG, Kendall SFH, Smith BB (1939) The distribution of Spearman’s coefficient of rank correlation in a universe in which all ranking occur an equal number of times. Biometrika 30(3/4):251–273

    Article  Google Scholar 

  • Latorre F, Belmonte J (2004) Temporal and spatial distribution of atmospheric Poaceae pollen in Catalonia (NE Spain) in 1996–2001. Grana 43:156–163. doi:10.1080/00173130410019064

    Google Scholar 

  • Levesque R (2007) Programming and Data Management for SPSS Statistics 17.0: A Guide for SPSS Statistics and SAS Users. Statistical Package for Social Sciences, Chicago

  • Llebot J (ed) (2010) Segon informe sobre el canvi climàtic a Catalunya. Generalitat de Catalunya, Barcelona

  • Makra L, Matyasovskzy I (2011) Trends in the characteristics of allergenic pollen in Szeged, Hungary. Acta Climatol Chorol 44–45:111–125

    Google Scholar 

  • Makra L, Matyasovskzy I, Deák AJ (2011) Trends in the characteristics of allergenic pollen circulation in central Europe based on the example of Szeged, Hungary. Atmos Environ 41:7011–7021. doi:10.1016/j.atmosenv.2011.07.051

    Google Scholar 

  • Mann HB (1945) Non-parametric tests against trend. Econometrica 13(3):245–259

    Article  Google Scholar 

  • Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18(1):50–60

    Article  Google Scholar 

  • McNemar Q (1947) Note on the sampling error of the difference between correlated proportions of percentages. Psychometrika 12(2):153–157

    Article  CAS  Google Scholar 

  • Mearns LO, Rosenzweig C, Goldberg R (1997) Mean and variance change in climatic scenarios: methods, agricultural applications and measures of uncertainty. Clim Chang 35:367–396. doi:10.1023/A:1005358130291

    Google Scholar 

  • Menzel A (2002) Phenology: its importance to the global change community. Clim Chang 54:379. doi:10.1023/A:1016125215496

    Google Scholar 

  • Menzel A, Estrella N, Fabian P (2001) Spatial and temporal variability of the phenological seasons in Germany from 1951–1996. Glob Chang Biol 7:657–666. doi:10.1046/j.1365-2486.2001.00430.x

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa E, Ahas R, Alm-Kübler K, Bissolli P, Braslavská O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donnelly A, Fililla Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, Remišová V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski FE, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976. doi:10.1111/j.1365-2486.2006.01193.x

  • MMA, Ministerio de Medio Ambiente de España (2005) Principales conclusiones de la Evaluación Preliminar de los Impactos en España por efecto del Cambio Climático. Centro de Publicaciones del MMA, Madrid

    Google Scholar 

  • Önöz B, Bayazit M (2003) The power of statistical tests for trend detection. Turk J Eng Environ Sci 27:247–251

    Google Scholar 

  • Orlandi F, Ruga L, Romano B, Fornaciari M (2005) Olive flowering as an indicator of local climatic changes. Theor Appl Climatol 81:169–176. doi:10.1007/s00704-004-0120-1

    Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. doi:10.1038/nature01286

    Google Scholar 

  • Peñuelas J, Filella I, Comas P (2002) Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Glob Chang Biol 9:131–140. doi:10.1046/j.1365-2486.2002.00489.x

  • Rasmussen A (2002) The effects of climate change on the birch pollen season in Denmark. Aerobiologia 18:253–265. doi:10.1023/A:1021321615254

    Google Scholar 

  • Recio M, Rodríguez-Rajo FJ, Jato V, Trigo MM, Cabezudo B (2009) The effect of recent climatic trends on Urticaceae pollination in two bioclimatically different areas in the Iberian Peninsula: Málaga and Vigo. Clim Chang 97:215–228. doi:10.1007/s10584-009-9620-4

    Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389

    Article  Google Scholar 

  • Solomon S et al (eds) (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge Univ Press, New York

    Google Scholar 

  • Spearman C (1904) “General intelligence” objectively determined and measured. Am J Psychol 15(2):202–286

    Article  Google Scholar 

  • Spieksma FTM, Emberlin JC, Hjelmroos M, Jäger S, Leuschner RM (1995) Atmospheric birch (Betula) pollen in Europe: trends and fluctuations in annual quantities and the starting dates of the seasons. Grana 34:51–57. doi:10.1080/00173139509429033

    Google Scholar 

  • Stach A, Emberlin J, Smith M, Adams-Groom B, Myszkowska D (2008) Factors that determine the severity of Betula spp. pollen seasons in Poland (Poznań and Krakow) and the United Kingdom (Worcester and London). Int J Biometeorol 52:311–321. doi:10.1007/s00484-007-0127-2

    Google Scholar 

  • Sunyer J, Jarvis D, Pekkanen J, Chinn S, Janson C, Leynaert B, Luczynska C, Garcia-Esteban R, Burney P, Antó J-M (2004) Geographic variations in the effect of atopy on asthma in the European Community Respiratory Health Survey. J Allerg Clin Immunol 114:1033–1039. doi:10.1016/j.jaci.2004.05.072

    Google Scholar 

  • Tedeschini E, Rodríguez-Rajo FJ, Caramiello R, Jato V, Frenguelli G (2006) The influence of climate changes in Platanus spp. Pollination in Spain and Italy. Grana 45:222–229. doi:10.1080/00173130600726646

    Google Scholar 

  • Teranishi H, Kenda Y, Katoh T, Kasuya M, Oura E, Taira H (2000) Possible role of climate change in the pollen scatter of Japanese cedar Cryptomeria japonica in Japan. Clim Res 14:65–70. doi:10.3354/cr014065

    Google Scholar 

  • Theil H (1950) A rank-invariant method of linear and polynomial regression analysis. I, II, III. Proc Knoniklijke Ned Acad Wet 53:386–392

    Google Scholar 

  • Tormo R, Gonzalo A, Silva I, Muñoz AF (2010) General trends in airborne pollen production and pollination periods at a Mediterranean site (Badajoz, Southwest Spain). J Investig Allerg Clin 20(7):567–574

    Google Scholar 

  • Tormo R, Silva I, Gonzalo A, Moreno A, Pérez R, Fernández S (2011) Phenological records as a complement to aerobiological data. Int J Biometeorol 55:51–65. doi:10.1007/s00484-010-0308-2

    Google Scholar 

  • Trigo MM, Recio M, Docampo S, Melgar M, Cabezudo B (2006) The use of aerobiological data as indicators of climate change. In: Clot B (ed) The 8th International Congress on Aerobiology. International Association for Aerobiology, Neuchâtel

    Google Scholar 

  • van Vliet AJH, Overeem A, De Groot RS, Jacobs AFG, Spieksma FTM (2002) The influence of temperature and climate change on the timing of pollen release in the Netherlands. Int J Climatol 22:1757–1767. doi:10.1002/joc.820

    Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395. doi:10.1038/416389a

    Google Scholar 

  • Wan S, Yuan T, Bowdish S, Wallace L, Russell SD, Luo Y (2002) Response of an allergenic species, Ambrosia psilostachya (Asteraceae), to experimental warming and clipping: implications for public health. Am J Bot 89:1843–1846. doi:10.3732/ajb.89.11.1843

    Google Scholar 

  • Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83

    Article  Google Scholar 

  • Yue S, Pilon P, Cavadias G (2002) Power of the Mann–Kendall and Spearman’s Rho tests for detecting monotonic trends in hydrological series. J Hydrol 259:254–271. doi:10.1016/S0022-1694(01)00594-7

    Google Scholar 

  • Zar JH (1972) Significance testing of the Spearman rank correlation coefficient. J Am Stat Assoc 67:339

    Article  Google Scholar 

  • Ziello C, Sparks TH, Estrella N, Belmonte J, Bergmann KH, Bucher E, Brighetti MA, Damialis A, Detandt M, Galán C, Gehrig R, Grewling L, Gutiérrez Bustillo M, Hallsdóttir M, Kockhans-Bieda MC, De Linares C, Myszkowska D, Pàldy A, Sánchez A, Smith M, Thibaudon M, Travaglini A, Uruska A, Valencia-Barrera RM, Vokou D, Wachter R, De Weger LA, Menzel A (2012) Changes to airborne pollen counts across Europe. PLoS One 7:e34076. doi:10.1371/journal.pone.0034076

  • Ziska LH, Caulfield FA (2000) Rising carbon dioxide and pollen production of common ragweed, a known allergy-inducing species: implications for public health. Aust J Plant Physiol 27:893–898

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank to different projects and entities for financing this study: COST ES0603 EUPOL; Laboratorios LETI S.A.; European Commission for “ENV4-CT98-0755”; Spanish Ministry of Science and Technology I + D + I for “AMB97-0457-CO7-021”, “REN2001-10659-CO3-01”, “CGL2004-21166-E”, “CGL2005-07543/CLI”, “CGL2009-11205”, “MTM2009-08869”, FEDER, and CONSOLIDER CSD 2007_00067 GRACCIE; also the Catalan Government AGAUR for “2002SGR00059”, “2005SGR00519” and “2009SGR1102”. The authors wish to thank the anonymous referees for careful reading and very helpful comments that resulted in an overall improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordina Belmonte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Llamazares, Á., Belmonte, J., Delgado, R. et al. A statistical approach to bioclimatic trend detection in the airborne pollen records of Catalonia (NE Spain). Int J Biometeorol 58, 371–382 (2014). https://doi.org/10.1007/s00484-013-0632-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-013-0632-4

Keywords

Navigation