Skip to main content

Advertisement

Log in

Coupled stochastic weather generation using spatial and generalized linear models

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

We introduce a stochastic weather generator for the variables of minimum temperature, maximum temperature and precipitation occurrence. Temperature variables are modeled in vector autoregressive framework, conditional on precipitation occurrence. Precipitation occurrence arises via a probit model, and both temperature and occurrence are spatially correlated using spatial Gaussian processes. Additionally, local climate is included by spatially varying model coefficients, allowing spatially evolving relationships between variables. The method is illustrated on a network of stations in the Pampas region of Argentina where nonstationary relationships and historical spatial correlation challenge existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Apipattanavis S, Podestá G, Rajagopalan B, Katz RW (2007) A semiparametric multivariate and multisite weather generator. Water Resour Res 43:1–19. doi:10.1029/2006WR005714

  • Baigorria GA, Jones JW (2010) GiST: a stochastic model for generating spatially and temporally correlated daily rainfall data. J Clim 23(22):5990–6008

  • Beersma JJ, Buishand TA (2003) Multi-site simulation of daily precipitation and temperature conditional on the atmospheric circulation. Clim Res 25(2):121–133

    Article  Google Scholar 

  • Brissette FP, Khalili M, Leconte R (2007) Efficient stochastic generation of multi-site synthetic precipitation data. J Hydrol 345:121–133

    Article  Google Scholar 

  • Buishand T (1978) Some remarks on the use of daily rainfall models. J Hydrol 36(3):295–308

    Article  Google Scholar 

  • Buishand TA, Brandsma T (2001) Multisite simulation of daily precipitation and temperature in the Rhine basin by nearest-neighbor resampling. Water Resour Res 37(11):2761–2776

    Article  Google Scholar 

  • Calanca P, Semenov MA (2013) Local-scale climate scenarios for impact studies and risk assessments: integration of early 21st century ENSEMBLES projections into the ELPIS database. Theor Appl Climatol 113:445–455

    Article  Google Scholar 

  • Caraway NM, McCreight JL, Rajagopalan B (2014) Multisite stochastic weather generation using cluster analysis and k-nearest neighbor time series resampling. J Hydrol 508:197–213

    Article  Google Scholar 

  • Chandler RE (2005) On the use of generalized linear models for interpreting climate variability. Environmetrics 16:699–715

    Article  Google Scholar 

  • Chilès JP, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley, New York

    Book  Google Scholar 

  • Fassò A, Finazzi F (2011) Maximum likelihood estimation of the dynamic coregionalization model with heterotopic data. Environmetrics 22(6):735–748

    Article  Google Scholar 

  • Foufoula-Georgiou E, Georgakakos KP (1991) Hydrologic advances in space-time precipitation modeling and forecasting. In: Bowles DS, O’Connell (eds) Recent advances in the modeling of hydrologic systems. Springer, Netherlands, pp 47–65

  • Friend AD, Stevens AK, Knox RG, Cannell MGR (1997) A process-based terrestrial biosphere model of ecosystem dynamics. Ecol Model 95:249–287

    Article  CAS  Google Scholar 

  • Furrer EM, Katz RW (2007) Generalized linear modeling approach to stochastic weather generators. Clim Res 34:129–144

    Article  Google Scholar 

  • Furrer EM, Katz RW (2008) Improving the simulation of extreme precipitation events by stochastic weather generators. Water Resour Res 44:1–13. doi:10.1029/2008WR007316

  • Harrold TI, Sharma A, Sheather SJ (2003) A nonparametric model for stochastic generation of daily rainfall amounts. Water Resour Res 39(12):1–11

  • Hashmi MZ, Shamseldin AY, Melville BW (2011) Comparison of SDSM and LARS-WG for simulation and downscaling of extreme precipitation events in a watershed. Stoch Environ Res Risk Assess 25(4):475–484

    Article  Google Scholar 

  • Hauser T, Demirov E (2013) Development of a stochastic weather generator for the sub-polar North Atlantic. Stoch Environ Res Risk Assess 27(7):1533–1551

    Article  Google Scholar 

  • Katz RW (1977) Precipitation as a chain-dependent process. J Appl Meteorol 16:671–676

    Article  Google Scholar 

  • Khalili M, Brissette F, Leconte R (2009) Stochastic multi-site generation of daily weather data. Stoch Environ Res Risk Assess 23(6):837–849

    Article  Google Scholar 

  • Kim T-W, Ahn H, Chung G, Yoo C (2008) Stochastic multi-site generation of daily rainfall occurrence in south Florida. Stoch Environ Res Risk Assess 22(6):705–717

    Article  Google Scholar 

  • Kleiber W, Katz RW, Rajagopalan B (2012) Daily spatiotemporal precipitation simulation using latent and transformed Gaussian processes. Water Resour Res 48:1–17. doi:10.1029/2011WR011105

  • Kleiber W, Katz RW, Rajagopalan B (2013) Daily minimum and maximum temperature simulation over complex terrain. Ann Appl Stat 7:588–612

    Article  Google Scholar 

  • Lall U, Sharma A (1996) A nearest neighbor bootstrap for resampling hydrological time series. Water Resour Res 32:679–693

    Article  Google Scholar 

  • Lennartsson J, Baxevani A, Chen D (2008) Modelling precipitation in Sweden using multiple step Markov chains and a composite model. J Hydrol 363(1–4):42–59. URL http://linkinghub.elsevier.com/retrieve/pii/S0022169408004848

  • Lima CHR, Lall U (2009) Hierarchical Bayesian modeling of multisite daily rainfall occurrence: rainy season onset, peak and end. Water Resour Res 45:1–14. doi:10.1029/2008WR007485

  • McCullagh P, Nelder JA (1989) Generalized linear models. Chapman and Hall, London

    Book  Google Scholar 

  • Mehrotra R, Sharma A (2007) A semi-parametric model for stochastic generation of multi-site daily rainfall exhibiting low-frequency variability. J Hydrol 335:180–193

    Article  Google Scholar 

  • Mehrotra R, Srikanthan R, Sharma A (2006) A comparison of three stochastic multi-site precipitation occurrence generators. J Hydrol 331:280–292

    Article  Google Scholar 

  • Qian B, Corte-Real J, Xu H (2002) Multisite stochastic weather models for impact studies. Int J Climatol 2002:1377–1397

    Article  Google Scholar 

  • Racsko P, Szeidl L, Semenov M (1991) A serial approach to local stochastic weather models. Ecol Model 57:27–41

    Article  Google Scholar 

  • Rajagopalan B, Lall U (1999) A k-nearest neighbor simulator for daily precipitation and other weather variables. Water Res Res 35(10):3089–3101

    Article  Google Scholar 

  • Rajagopalan B, Lall U, Tarboton DG (1997a) Evaluation of kernel density estimation methods for daily precipitation resampling. Stoch Hydrol Hydraul 11(6):523–547

    Article  Google Scholar 

  • Rajagopalan B, Lall U, Tarboton DG, Bowles DS (1997b) Multivariate nonparametric resampling scheme for generation of daily weather variables. Stoch Hydrol Hydraul 11:523–547

    Article  Google Scholar 

  • Richardson CW (1981) Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour Res 17(1):182–190

    Article  Google Scholar 

  • Richardson CW, Wright DA (1984) WGEN: a model for generating daily weather variables. ARS (USA) 1–83

  • Semenov MA (2008) Simulation of extreme weather events by a stochastic weather generator. Clim Res 35:203–212

    Article  Google Scholar 

  • Semenov MA, Barrow EM (1997) Use of a stochastic weather generator in the development of climate change scenarios. Clim Change 35:397–414

    Article  Google Scholar 

  • Semenov P-BS, Pilkington-Bennett S, Calanca P (2013) Validation of ELPIS 1980–2010 baseline scenarios using the European Climate Assessment observed dataset. Clim Res 51:1–9

    Article  Google Scholar 

  • Sharif M, Burn DH (2007) Improved k-nearest neighbor weather generating model. J Hydrol Eng 12(1):42–51

    Article  Google Scholar 

  • Srikanthan R, Pegram GGS (2009) A nested multisite daily rainfall stochastic generation model. J Hydrol 371:142–153

    Article  Google Scholar 

  • Stern RD, Coe R (1984) A model fitting analysis of daily rainfall data. J R Stat Soc Ser A Gen 147:1–34

    Article  Google Scholar 

  • Wallis TW, Griffiths JF (1997) Simulated meteorological input for agricultural models. Agric Forest Meteorol 88:241–258

    Article  Google Scholar 

  • Wheater H, Chandler R, Onof C, Isham V, Bellone E, Yang C, Lekkas D, Lourmas G, Segond M-L (2005) Spatial-temporal rainfall modelling for flood risk estimation. Stoch Environ Res Risk Assess 19(6):403–416

    Article  Google Scholar 

  • Wilks DS (1998) Multisite generalization of a daily stochastic precipitation generation model. J Hydrol 210:178–191

    Article  Google Scholar 

  • Wilks DS (1999) Simultaneous stochastic simulation of daily precipitation, temperature and solar radiation at multiple sites in complex terrain. Agric Forest Meteorol 96:85–101

    Article  Google Scholar 

  • Wilks DS, Wilby RL (1999) The weather generation game: a review of stochastic weather models. Prog Phys Geogr 23:329–357

    Article  Google Scholar 

  • Woolhiser DA (1992) Modeling daily precipitation: progress and problems. Stat Environ Earth Sci 5:71–89

  • Yang C, Chandler RE, Isham VS, Wheater HS (2005) Spatial-temporal rainfall simulation using generalized linear models. Water Resour Res 41:1–13. doi:10.1029/2004WR003739

  • Yates D, Gangopadhyay S, Rajagopalan B, Strzepek K (2003) A technique for generating regional climate scenarios using a nearest-neighbor algorithm. Water Resour Res 39:1199

    Article  Google Scholar 

Download references

Acknowledgments

Research partially supported by NSF EaSM grant 1049109. Thanks to Guillermo Podesta for providing daily weather data for Argentine Pampas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Kleiber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verdin, A., Rajagopalan, B., Kleiber, W. et al. Coupled stochastic weather generation using spatial and generalized linear models. Stoch Environ Res Risk Assess 29, 347–356 (2015). https://doi.org/10.1007/s00477-014-0911-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-014-0911-6

Keywords

Navigation