Skip to main content
Log in

Bayesian stochastic modelling for avalanche predetermination: from a general system framework to return period computations

Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Stochastic models are recent but unavoidable tools for snow avalanche hazard mapping that can be described in a general system framework. For the computation of design return periods, magnitude and frequency have to be evaluated. The magnitude model consists of a set of physical equations for avalanche propagation associated with a statistical formalism adapted to the input–output data structure. The friction law includes at least one latent friction coefficient. The Bayesian paradigm and the associated simulation techniques assist considerably in performing the inference and taking estimation errors into account for prediction. Starting from the general case, simplifying hypotheses allows computing the predictive distribution of high return periods on a case-study. Only release and runout altitudes are considered so that the model can use the French database. An inversible propagation model makes it possible to work with the latent friction coefficient as if it is observed. Prior knowledge is borrowed from an avalanche path with similar topographical characteristics. Justifications for the working hypotheses and further developments are discussed. In particular, the whole approach is positioned with respect to both deterministic and stochastic hydrology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abbott MB, Bathurst JC et al (1986) An introduction to the European Hydrological System—Système Hydrologique Européen, ’SHE’, 1: History and philosophy of a physically-based distributed modelling system. J Hydrol 87:45–59

    Article  Google Scholar 

  • Adjel G (1996) Méthodes statistiques pour la détermination de la distance d’arrêt maximale des avalanches. Thèse de doctorat. Université Joseph Fourrier, Grenoble, France, p 156

  • Ancey C (2005) Monte Carlo calibration of avalanches described as Coulomb fluid flows. Philos Trans R Soc Lond A 363:1529–1550 (doi: 10.1098/rsta.2005.1593)

    Google Scholar 

  • Ancey C, Gervasoni C, Meunier M (2004) Computing extreme avalanches. Cold Reg Sci Technol 39:161–184

    Article  Google Scholar 

  • Bakkehoi S, Dormaas U, Lied K (1983) Calculation of snow avalanche runout distance. Ann Glaciol 4:24–29

    Google Scholar 

  • Barbolini M, Keylock CJ (2002) A new method for avalanche hazard mapping using a combination of statistical and deterministic models. Nat Hazard Earth Syst Sci 2:239–245

    Article  Google Scholar 

  • Barbolini M, Gruber U, Keylock CJ, Naaim M, Salvi F (2000) Application of statistical and hydraulic-continuum dense-snow avalanche models to five real European sites. Cold Reg Sci Technol 31:133–149

    Article  Google Scholar 

  • Bartelt P, Salm B, Gruber U (1999) Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining. J Glaciol 45:242–254

    Google Scholar 

  • Bayes T (1763) Essay towards solving a problem in the doctrine of chances. Philos Trans R Soc Lond 53:370–418; 54:296–325

    Google Scholar 

  • Berger JO (1985) Statistical decision theory and Bayesian analysis, 2nd edn. Springer, Heidelberg, p 617

  • Bergström S (1995) The HBV model. In: Singh VP (ed) Computer models in watershed hydrology. Water Resources Publications, Colorado, pp 443–476

    Google Scholar 

  • Berliner M (2003) Physical-statistical modelling in geophysics. J Geophys Res 108(D24) (doi:10.1029/2002JD002865)

  • Bernardo JM, Smith AFM (1994) Bayesian theory. Wiley, London

  • Best N, Richardson S, Thomson A (2004) A comparison of Bayesian spatial models for disease mapping. Stat Methods Med Res 14(1):35–59

    Article  Google Scholar 

  • Beven K (1989) Changing ideas in hydrology—the case of physically-based models. J Hydrol 105:157–172

    Article  Google Scholar 

  • Bouchet A (2003) Etude expérimentale des avalanches denses de neige sèche. Thèse de doctorat. Université Joseph Fourrier, Grenoble, France, p 132

  • Bozhinskiy AN, Nazarov AN, Chernouss PA (2001) Avalanches: a probabilistic approach to modelling. Ann Glaciol 32:255–258

    Article  Google Scholar 

  • Brooks SP (2003) Bayesian computation: a statistical revolution. Trans R Stat Soc Ser A 15:2681–2697

    Google Scholar 

  • Brooks SP, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7(4):434–455

    Article  Google Scholar 

  • Casassa G, Narita H, Maeno N (1989) Measurements of friction coefficients of snow blocks. Ann Glaciol 13:40–44

    Google Scholar 

  • Christen M, Bartelt P, Gruber U (2002) Aval-1D: an avalanche dynamics program for the practice. In: Proceedings of the INTERPRAEVENT congress, vol 2, Matsumoto, Japan. Congress publication, pp 715–725

  • Clark JS (2005) Why environmental scientists are becoming Bayesians. Ecol Lett 8:2–14

    Article  Google Scholar 

  • Coles S (2001) An introduction to statistical modelling of extreme values. Springer, Heidelberg

  • Congdon P (2001) Bayesian satistical modelling. Wiley, London, 431p

  • Eckert N, Parent E (2006) Monte Carlo calibration of a dynamic model for avalanche predetermination using the Metropolis–Hastings algorithm. In: Proceedings of the 3rd international conference on avalanches and related subjects, Kirovsk, Russia

  • Eckert N, Parent E, Richard D (2006a) Revisiting statistical–topographical methods for avalanche predetermination: Bayesian modelling for runout distance predictive distribution. Cold Reg Sci Technol (accepted)

  • Eckert N, Parent E, Belanger L et al (2006b) Hierarchical modelling for spatial analysis of avalanche frequency at the scale of the township. Cold Reg Sci Technol (accepted)

  • Edijatno Nascimento NdO, Yang X, Makhlouf Z, Michel C (1999) GR3J: a daily watershed model with three free parameters. Hydrol Sci 4:263–277

    Article  Google Scholar 

  • Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–72

    Google Scholar 

  • Grêt-Regamey A, Straub D (2006) Spatially explicit avalanche risk assessment linking Bayesian networks to a GIS. Nat Hazard Earth Syst Sci 6:911–926

    Google Scholar 

  • Gruber U, Bartelt P, Haefner H (1998) Avalanche hazard mapping using numerical Voellmy-fluid models. In: Proceedings of the anniversary conference 25 years of snow avalanche research. Voss, Norway, pp 117–121

  • Gubler H (1993) Dense-flow avalanches, a discussion of experimental results and basic processes. In: Proceedings of the international workshop on rapid gravitational mass movements. Cemagref Grenoble, France, pp 127–136

  • Harbitz C, Issler D, Keylock CJ (1998) Conclusions from a recent survey of avalanche computational models. In: Proceedings of the anniversary conference 25 years of snow avalanche research, Voss, 12–16 May. Norvegian Geotechnical Institute publication, 203, pp 128–139

  • Harbitz C, Harbitz A, Farrokh N (2001) On probability analysis in snow avalanche hazard zoning. Ann Glaciol 32:290–298

    Article  Google Scholar 

  • Hutter K, Koch T, Plüss C, Savage S (1995) The dynamics of avalanches of granular materials from initiation to runout, part II: laboratory experiments. Acta Mech 109:127–165

    Article  Google Scholar 

  • Issler D (1997) Modelling of snow entrainment and deposition in powder snow avalanches. Ann Glaciol 26:253–258

    Google Scholar 

  • Jamard AL, Garcia S, Bélanger L (2002) L’enquête permanente sur les Avalanches (EPA). Statistique descriptive générale des événements et des sites. DESS Ingéniérie Mathématique option Statistique, Université Joseph Fourrier, Grenoble, France. Avalaible online at http://www.avalanches.fr/ p 101

  • Jeffreys H (1939) Theory of probability. Oxford University Press, New York

  • Jibson RW, Harp EL, Michael JA (2000) A method for producing digital probabilistic seismic landslide hazard maps. Eng Geol 58:271–299

    Article  Google Scholar 

  • Kadane JB, Wolson LJ, O’Hagan A, Craig K (1998) Papers on elicitation with discussions. Statistician, pp 3–53

  • Karniadakis GE, Glimm J (2006) Uncertainty quantification in simulation science—preface. J Comput Phys 217:1–4

    Article  Google Scholar 

  • Kavetski D, Franks SW, Kuczera G (2002) Confronting input uncertainty in environmental modelling. In: Duan Q, Gupta HV, Sorooshian S, Rousseau AN, Turcotte R (eds) Calibration of watershed models. AGU Water Science and Applications Series 6, pp 49–68

  • Keylock CJ (2005). An alternative form for the statistical distribution of extreme avalanche runout distances. Cold Reg Sci Technol 42:185–193

    Article  Google Scholar 

  • Keylock CJ, Barbolini M (2001) Snow avalanche impact pressure—vulnerability relations for use in risk assessment. Can Geotech J 38:227–238

    Article  Google Scholar 

  • Kokkonen T, Koivusalo H, Karvonen T (2001) A semi-distributed approach to rainfall-runoff modelling: a case study in a snow affected catchment. Environ modell Softw 16:481–493

    Article  Google Scholar 

  • Krzysztofowicz R (1983) Why should a forecaster and a decision maker use Bayes Theorem. Water Resour Res 19(2):327–336

    Article  Google Scholar 

  • Krzysztofowicz R (2001) The case of probabilistic forecasting in hydrology. J Hydrol 249:2–9

    Article  Google Scholar 

  • Kuczera G, Parent E (1998) Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm. J Hydrol (211)1–4, pp 69–85

  • Lauritzen S (1996) Graphical models. Oxford University Press, New York

  • Lied K, Bakkehoi S (1980) Empirical calculations of snow-avalanche run-out distances based on topographic parameters. J Glaciol 26(94):165–176

    Google Scholar 

  • Maggioni M (2004) Avalanche release Areas and their influence on uncertainty in avalanche hazard mapping. Chapiter 2: Monte Carlo simulations. PhD Thesis, University of Zurich

  • McClung D (2000) Extreme avalanche runout in space and time. Can Geotech J 37:161–170

    Article  Google Scholar 

  • McClung D (2001). Extreme avalanche runout: a comparison of empirical models. Can Geotech J 38:1254–1265

    Article  Google Scholar 

  • McClung D, Lied K (1987) Statistical and geometrical definition of snow-avalanche runout. Cold Reg Sci Technol 13:107–119

    Article  Google Scholar 

  • McClung D, Tweedy J (1994) Numerical avalanche prediction: Kootenay Pass, British Columbia, Canada. J Glaciol 40(135):350–358

    Google Scholar 

  • McClung D, Mears AI, Schearer P (1989) Extreme avalanche run-out: data from four mountain ranges. Ann Glaciol 13:180–185

    Google Scholar 

  • Mengersen KL, Robert CP, Guihennec-Jouyaux C (1999) MCMC convergence diagnostics: a review (with discussion). In: Bernardo JM, Berger JO, Dawid AP, Smith AFM (eds) Bayesian statistics. Oxford University Press, New York, pp 415–440

    Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machine. J Chem Phys 21:1087–1091

    Article  CAS  Google Scholar 

  • Meunier M, Ancey C (2004) Towards a conceptual approach to predetermining high-return-period avalanche run-out distances. J Glaciol 50(169):268–278

    Article  Google Scholar 

  • Meunier M, Ancey C, Taillandier JM (2003) Fitting dynamic avalanche models with documented events at the Col du Lautaret site (France) using the conceptual approach. Cold Reg Sci Technol 39:55–66

    Article  Google Scholar 

  • Meunier M, Ancey C, Richard D (2004) L’approche conceptuelle pour l’étude des avalanches. Cemagref ed, p 245

  • Micovic Z, Quick MC (1999) A rainfall and snowmelt runoff modelling approach to flow estimation at ungauged sites in British Columbia. J Hydrol 226:101–120

    Article  Google Scholar 

  • Mougin P (1922). Les avalanches en Savoie. Ministère de l‘Agriculture, Direction Générale des Eaux et Forêts, Service des Grandes Forces Hydrauliques, Paris, France, pp 175–317

  • Naaim M (1998) Contribution to snow drift and avalanches flows modelling. Habilitation Thesis. University Joseph Fourier, Grenoble, France, p 180

  • Naaim M, Naaim-Bouvet F, Faug T, Bouchet A (2004) Dense snow avalanche modelling: flow, erosion, deposition and obstacle effects. Cold Reg Sci Technol 39:193–204

    Article  Google Scholar 

  • Naveau P, Nogaj M, Amman C et al (2005) Statistical methods for the analysis of climate extremes. C R Geosci 335:1013–1022

    Article  Google Scholar 

  • Oakley J, O’Hagan A (2004) Probabilistic sensitivity analysis of complex models: a Bayesain approach. J R Stat Soc B 66:651–659

    Article  Google Scholar 

  • Parent E, Bernier J (2003) Bayesian P.O.T. modelling for historical data. J Hydrol 274:95–108

    Article  Google Scholar 

  • Perrin C, Michel C, Andreassian V (2001) Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments. J Hydrol 242:275–301

    Article  Google Scholar 

  • Pickands J (1975) Statistical inference using extreme order statistics. Ann Stat 3:11–130

    Google Scholar 

  • Robert CP, Casella G (1998) Monte Carlo statistical methods. Springer, Heidelberg

  • Salm B, Burkard A, Gubler HU (1990) Berechnung von Fliesslawinen: eine Anleitung für Praktiker mit Beispilen. SLF Davos technical report 47

  • Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215

    Article  Google Scholar 

  • Savage S, Hutter K (1991) The dynamics of avalanches of granular materials from initiation to runout, part 1: analysis. Acta Mech 86:201–233

    Article  Google Scholar 

  • Sigurdsson S, Jonasson K, Arnalds K (1998) Transferring avalanches between paths. In: Proceedings of the anniversary conference 25 years of snow avalanche research, Voss, 12–16 May. Norvegian Geotechnical Institute publication 203, pp 259–263

  • Sovilla B (2004) Field experiments and numerical modelling of mass entrainment and deposition processes in snow avalanches. PhD Thesis, ETH Zurich, Switzerland

  • Sovilla B, Sommavilla F, Tomaselli A (2001) Measurements of mass balance in dense snow avalanche events. Ann Glaciol 32:230–236

    Article  Google Scholar 

  • Spiegelhalter DJ, Thomas DJ, Best A (2000) WinBUGS version 1.3 user manual. MRC Biostatistics Unit

  • Tanner MH (1992) Tools for statistical inference: observed data and data augmentation methods. Springer, Heidelberg

  • Torre F, Boreux J-J, Parent E (2001) The Metropolis–Hastings Algorithm, a handy tool for the practice of environmental model estimation: illustration with biochemical oxygen demand data. Cybergéo, article#187, 34 pp. Available at http://www.cybergeo.presse.fr/

  • Voellmy A (1955) Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung, Jahrg, 73, 12, pp 159–162, 212–217, 246–249 and 280–285

  • Zwinger T (2000) Dynamik einer Trockenschneelawine auf beliebig geformten Berghängen. PhD Thesis, Technische Universität Wien

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Eckert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckert, N., Parent, E., Naaim, M. et al. Bayesian stochastic modelling for avalanche predetermination: from a general system framework to return period computations. Stoch Environ Res Risk Assess 22, 185–206 (2008). https://doi.org/10.1007/s00477-007-0107-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-007-0107-4

Keywords

Navigation