Skip to main content
Log in

Eucalyptus spp. and Populus spp. coping with salinity stress: an approach on growth, physiological and molecular features in the context of short rotation coppice (SRC)

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

A holistic approach, molecular and eco-physiological, has provided a better understanding of the response of eucalyptus and poplar genotypes to salt stress. Different tolerance mechanisms with varying degrees of effectiveness as well as differences in the response of genes linked to xylem differentiation have been identified.

Abstract

We studied the behavior of four eucalyptus genotypes (Eucalyptus camaldulensis Dehnh: ‘169’; E. grandis Hill ex Maiden × E. urophylla S.T. Blake: ‘5E’; Eucalyptus globulus Labill: ‘Anselmo’ and ‘Odiel’) and four poplar genotypes (Populus alba L.: ‘PO 10-10-20’ and ‘J 1-3-18’, P. tremula L. × P. alba: ‘7171-B4’ and P. × canadensis Moench.: ‘Oudenberg’) in relation to their response to saline conditions and their capacity to grow in short rotation for biomass production. For this purpose, plants were grown under greenhouse conditions and subjected to two different saline concentrations of NaCl, one moderate (50 mM) and one severe (125 mM), as well as a control treatment. Growth, as well as several functional, morphological and biochemical parameters were considered. We also performed an expression analysis of genes that encode enzymes and transcription factors involved in wood formation. The four eucalyptus genotypes showed a very high survival rate under both moderate and severe salt treatments, as did both white poplar genotypes (‘PO 10-10-20’ and ‘J 1-3-18’). All of them displayed a tolerant behavior toward salinity stress. In contrast, the poplar hybrids (‘7171-B4’ and ‘Oudenberg’) exhibited medium-tolerance or sensitive behavior. Possible tolerance mechanisms based on stomatal control, water use efficiency, capacity of dilute toxic ions through decreasing the specific leaf area and higher root/aerial biomass ratios were detected. These mechanisms were deemed to have varying degrees of effectiveness. A molecular approach identified changes in the expression of genes linked to xylem differentiation, the more tolerant genotypes being those with fewer modifications. These findings could contribute towards enabling the cultivation of fast-growing species in short rotation on marginal land affected by salinity for the production of lignocellulosic biomass. The response variability detected could lead to advances in breeding for tolerance to this type of stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbasi M, Mguis K, Béjaoui Z, Albouchi A (2014) Morphogenetic responses of Populus alba L. under salt stress. J For Res 25:155–161

    Article  Google Scholar 

  • Abbruzzese G, Beritognolo I, Muleo R, Piazzai M, Sabatti M, Scarascia Mugnozza G, Kuzminsky E (2009) Leaf morphological plasticity and stomatal conductance in three Populus alba L. genotypes subjected to salt stress. Environ Exp Bot 66:381–388

    Article  CAS  Google Scholar 

  • Adams HD, Kolb TE (2004) Drought responses of conifers in ecotone forests of northern Arizona: tree ring growth and leaf δ13C. Oecologia 140:217–225

    Article  PubMed  Google Scholar 

  • Beritognolo I, Piazzai M, Benucci S, Kuzminsky E, Sabatti M, Scarascia Mugnozza G, Muleo R (2007) Functional characterisation of three Italian Populus alba L. genotypes under salinity stress. Trees 21:465–477

    Article  Google Scholar 

  • Beritognolo I, Harfouche A, Brilli F, Prosperini G, Gaudet M, Brosché M, Salani F, Kuzminsky E, Auvinen P, Paulin L, Kangasjärvi J, Loreto F, Valentini R, Mugnozza GS, Sabatti M (2011) Comparative study of transcriptional and physiological responses to salinity stress in two contrasting Populus alba L. genotypes. Tree Physiol 31:1335–1355

    Article  CAS  PubMed  Google Scholar 

  • Bhargava KM, Singh A, Kumar A (2014) Seasonal variation in physiology of Eucalyptus genotypes in relation to soil salinity. Int J Adv Res 2:281–290

    Google Scholar 

  • Bolu WH, Polle A (2004) Growth and stress reactions in roots and shoots of a salt-sensitive poplar species (Populus x canescens). Trop Ecol 45:161–171

    Google Scholar 

  • Broeckx LS, Fichot R, Verlinden MS, Ceulemans R (2014) Seasonal variations in photosynthesis, intrinsic water-use efficiency and stable isotope composition of poplar leaves in a short-rotation plantation. Tree Physiol 34:701–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carocha V, Soler M, Hefer C, Cassan-Wang H, Fevereiro P, Myburg AA, Paiva JA, Grima-Pettenati J (2015) Genome-wide analysis of the lignin toolbox of Eucalyptus grandis. New Phytol 206:1297–1313

    Article  CAS  PubMed  Google Scholar 

  • Cassan-Wang H, Soler M, Yu H, Camargo EL, Carocha V, Ladouce N, Savelli B, Paiva JA, Leplé JC, Grima-Pettenati J (2012) Reference genes for high-throughput quantitative reverse transcription-PCR analysis of gene expression in organs and tissues of Eucalyptus grown in various environmental conditions. Plant Cell Environ 53:2101–2116

    Article  CAS  Google Scholar 

  • Cha-Um S, Kirdmanee C (2008) Assessment of salt tolerance in Eucalyptus, rain tree and Thai neem under laboratory and field conditions. Pak J Bot 40:2041–2051

    CAS  Google Scholar 

  • Cha-um S, Somsueb S, Samphumphuang T, Kirdmanee C (2013) Salt tolerant screening in eucalypt genotypes (Eucalyptus spp.) using photosynthetic abilities, proline accumulation, and growth characteristics as effective indices. In Vitro Cell Dev Pl 49:611–619

    Article  CAS  Google Scholar 

  • Chen S, Polle A (2010) Salinity tolerance of Populus. Plant Biol 12:317–333

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Li J, Fritz E, Wang S, Hüttermann A (2002) Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. Forest Ecol Manag 168:217–230

    Article  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understading and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Cuevas S, Alba N, Padro A (1997) Tolerancia a la salinidad de P. alba L. Estudio preliminar. Paper presented at the Congreso Forestal Español 3, Pamplona

  • Dillen SY, Monclus R, Barbaroux C, Bastien C, Ceulemans R, Dreyer E, Villar M, Brignolas F, Marron N (2011) Is the ranking of poplar genotypes for leaf carbon isotope discrimination stable across sites and years in two different full-sib families? Ann Forest Sci 68:1265–1275

    Article  Google Scholar 

  • Ding M, Hou P, Shen X, Wang M, Deng S, Sun J, Xiao F, Wang R, Zhou X, Lu C, Zhang D, Zheng X, Hu Z, Chen S (2010) Salt-induced expression of genes related to Na+/K+ and ROS homeostasis in leaves of salt-resistant and salt-sensitive poplar species. Plant Mol Biol 73:251–269

    Article  CAS  PubMed  Google Scholar 

  • Escalante-Pérez M, Lautner S, Nehls U, Selle A, Teuber M, Schnitzler JP, Teichmann T, Fayyaz P, Hartung W, Polle A, Fromm J, Hedrich R, Ache P (2009) Salt stress affects xylem differentiation of grey poplar (Populus × canescens). Planta 229:299–309

    Article  PubMed  Google Scholar 

  • Farquhar GD, Oleary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the inter-cellular carbon-dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    Article  CAS  Google Scholar 

  • Ferrio JP, Florit A, Vega A, Serrano L, Voltas J (2003) δ13C and tree-ring width reflect different drought responses in Quercus ilex and Pinus halepensis. Oecologia 137:512–518

    Article  CAS  PubMed  Google Scholar 

  • Gimeno TE, Pias B, Lemos-Filho JP, Valladares F (2009) Plasticity and stress tolerance override local adaptation in the responses of Mediterranean holm oak seedlings to drought and cold. Tree Physiol 29:87–98

    Article  PubMed  Google Scholar 

  • Gu J, Weina L, Akinnagbe A, Wang J, Jia L, Yang M (2012) Effect of salt stress on genetic diversity of Robinia pseudoacacia seedlings. Afr J Biotechnol 11:1838–1847

    Article  CAS  Google Scholar 

  • Harfouche A, Meilan R, Altman A (2014) Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. Tree Physiol 34:1181–1198

    Article  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Bhowmik PC, Hossain MA, Rahman MM, Prasad MN, Ozturk M, Fujita M (2014) Potential use of halophytes to remediate saline soils. BioMed Res Int 6:1–12

    Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Hocking D (1972) Comparison of proprietary with prescription nutrient solutions for Alberta white spruce and lodgepole pine. Canadian Forestry Service, Northern Forest Research Centre, Edmonton

    Google Scholar 

  • Hu R, Qi G, Kong Y, Kong D, Gao Q, Zhou G (2010) Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC Plant Biol 10:145

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussey SG, Saïdi MN, Hefer CA, Myburg AA, Grima-Pettenati J (2015) Structural, evolutionary and functional analysis of the NAC domain protein family in Eucalyptus. New Phytol 206:1337–1350

    Article  CAS  PubMed  Google Scholar 

  • Isla R, Guillén M, Aragüés R (2014) Response of five tree species to salinity and waterlogging: shoot and root biomass and relationships with leaf and root ion concentrations. Agroforest Syst 88:461–477

    Article  Google Scholar 

  • Janz D, Lautner S, Wildhagen H, Behnke K, Schnitzler JP, Rennenberg H, Fromm J, Polle A (2012) Salt stress induces the formation of a novel type of ‘pressure wood’ in two Populus species. New Phytol 194:129–141

    Article  CAS  PubMed  Google Scholar 

  • Jensen MK, Lindemose S, de Masi F, Reimer JJ, Nielsen M, Perera V, Workman CT, Turck F, Grant MR, Mundy J, Petersen M, Skriver K (2013) ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana. FEBS Open Bio 3:321–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junghans U, Polle A, Düchting P, Weiler E, Kuhlman B, Gruber F, Teichmann T (2006) Adaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology. Plant Cell Environ 29:1519–1531

    Article  CAS  PubMed  Google Scholar 

  • Karp A, Shield I (2008) Bioenergy from plants and the sustainable yield challenge. New Phytol 179:15–32

    Article  PubMed  Google Scholar 

  • Khasa PD, Hambling B, Kernaghan G, Fung M, Ngimbi E (2002) Genetic variability in salt tolerance of selected boreal woody seedlings. Forest Ecol Manag 165:257–269

    Article  Google Scholar 

  • Kim WY, Ali Z, Park HJ, Park SJ, Cha JY, Perez-Hormaeche J, Quintero FJ, Shin G, Kim MR, Qiang Z, Ning L, Park HC, Lee SY, Bressan RA, Pardo JM, Bohnert HJ, Yun DJ (2013) Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat Commun 4:1352

    Article  PubMed  Google Scholar 

  • Kumar M, Thammannagowda S, Bulone V, Chiang V, Han KH, Joshi CP, Mansfield SD, Mellerowicz E, Sundberg B, Teeri T, Ellis BE (2009) An update on the nomenclature for the cellulose synthase genes in Populus. Trends Plant Sci 14:248–254

    Article  CAS  PubMed  Google Scholar 

  • Lautner S (2013) Wood formation under drought stress and salinity. In: Fromm J (ed) Cellular aspects of wood formation. Springer, Heidelberg, pp 187–202

    Chapter  Google Scholar 

  • Liao Z, Chen M, Guo L, Gong Y, Tang F, Sun X, Tang K (2004) Rapid isolation of high-quality total RNA from taxus and ginkgo. Prep Biochem Biotechnol 34:209–214

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA 97:3730–3734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma HC, Fung L, Wang SS, Altman A, Huttermann A (1997) Photosynthetic response of Populus euphratica to salt stress. Forest Ecol Manag 93:55–61

    Article  Google Scholar 

  • Ma J, Lu J, Xu J, Duan B, He X, Liu J (2015a) Genome-wide identification of WRKY genes in the desert Poplar Populus euphratica and adaptive evolution of the genes in response to salt stress. Evol Bioinform 5:47–55

    Google Scholar 

  • Ma Y, Xu T, Wan D, Ma T, Shi S, Liu J, Hu Q (2015b) The salinity tolerant poplar database (STPD): a comprehensive database for studying tree salt-tolerant adaptation of poplar genomics. BMC Genom 16:205–212

    Article  Google Scholar 

  • Madsen PA, Mulligan DR (2006) Effect of NaCl on emergence and growth of a range of provenances of Eucalyptus citriodora, Eucalyptus populnea, Eucalyptus camaldulensis and Acacia salicina. Forest Ecol Manag 228:152–159

    Article  Google Scholar 

  • Maienza A, Mughini G, Salvati L, Benedetti A, Dell-Abate MT (2014) Assessing the influence of summer organic fertilization combined with nitrogen inhibitor on a short rotation woody crop in mediterranean environment. Int J For Res 2014(2014):5 http://dx.doi.org/10.1155/2014/371895

    Google Scholar 

  • Marcar NE, Crawford DF, Saunders A, Matheson AC, Arnold RA (2002) Genetic variation among and within provenances and families of Eucalyptus grandis W. Hill and E. globulus Labill. subsp. globulus seedlings in response to salinity and waterlogging. Forest Ecol Manag 162:231–249

    Article  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Monclus R, Villar M, Barbaroux C, Bastien C, Fichot R, Delmotte FM, Delay D, Petit JM, Bréchet C, Dreyer E, Brignolas F (2009) Productivity, water-use efficiency and tolerance to moderate water deficit correlate in 33 poplar genotypes from Populus deltoides x Populus trichocarpa F1 progeny. Tree Physiol 29:1329–1339

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nguyen NT, Moghaieb REA, Saneoka H, Fujita K (2004) RAPD markers associated with salt tolerance in Acacia auriculiformis and Acacia mangium. Plant Sci 167:797–805

    Article  CAS  Google Scholar 

  • Osakabe Y, Kawaoka A, Nishikubo N, Osakabe K (2012) Responses to environmental stresses in woody plants: key to survive and longevity. J Plant Res 125:1–10

    Article  CAS  PubMed  Google Scholar 

  • Pang CH, Wang BS (2008) Oxidative stress and salt tolerance in plants. In: Lüttge U, Beyschlag W, Murata J (eds) Progress in botany. Springer, Heidelberg, Berlin, pp 231–245

    Chapter  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Safe 60:324–349

    Article  CAS  Google Scholar 

  • Perez-Cruzado C, Sánchez-Ron D, Rodríguez-Soalleiro R, Hernández MJ, Sánchez-Martín MM, Cañellas I, Sixto H (2014) Biomass production assessment from Populus spp. short rotation irrigated crops in Spain. Global Change Biol 6:312–326

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quan R, Lin H, Mendoza I, Zhang Y, Cao W, Yang Y, Shang M, Chen S, Pardo JM, Guo Y (2007) SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell 19:1415–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajput VD, Chen Y, Ayup M (2015) Effects of salinity on physiological and anatomical indices in the early stages of Populus euphratica growth Russ. J Plant Physiolol 62(2):229–236

    CAS  Google Scholar 

  • Ranik M, Myburg AA (2006) Six new cellulose synthase genes from Eucalyptus are associated with primary and secondary cell wall biosynthesis. Tree Physiol 26:545–556

    Article  CAS  PubMed  Google Scholar 

  • Rewald B, Shelef O, Ephrath JE, Rachmilevitch S (2013) Adaptive plasticity of salt-stressed root systems. In: Azooz MM, Prasad MNV (eds) Ahmad P. Ecophysiology and responses of plants under salt stress. Springer, New York, pp 169–201

    Google Scholar 

  • Scarlat N, Dallemand JF, Monforti-Ferrario F, Nita V (2015) The role of biomass and bioenergy in a future bioeconomy: policies and facts. Environ Dev 15:3–34

    Article  Google Scholar 

  • Seki M, Umezawa T, Kim JM (2007) Transcriptome analysis of plant drought and salt stress response. In: Jenks JA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, New York

    Google Scholar 

  • Shi R, Sun Y-H, Li Q, Heber S, Sederoff R, Chiang VL (2010) Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant Cell Physiol 51:144–163

    Article  CAS  PubMed  Google Scholar 

  • Sixto H, Grau JM, Alba N, Alía R (2005) Response to sodium chloride in different species and clones of genus Populus L. Forestry 78:93–104

    Article  Google Scholar 

  • Sixto H, Hernández MJ, Barrio M, Carrasco J, Cañellas I (2007) Plantaciones del género Populus para la producción de biomasa con fines energéticos: revisión. Investigación Agraria: Sistemas y Recursos Forestales 16:277–294

    Google Scholar 

  • Sixto H, Gil P, Ciria P, Camps F, Sánchez M, Cañellas I, Voltas J (2014) Performance of hybrid poplar clones in short rotation coppice in Mediterranean environments: analysis of genotypic stability. Global Change Biol 6:661–671

    Article  Google Scholar 

  • Soler M, Camargo ELO, Carocha V, Cassan-Wang H, San Clemente H, Savelli B, Hefer CA, Paiva JA, Myburg AA, Grima-Pettenati J (2014) The Eucalyptus grandis R2R3 MYB transcription factor family: evidence for woody growth related evolution and function. New Phytol 206(4):1364–1377. http://doi.org/10.1111/nph.13039

    Article  PubMed  Google Scholar 

  • Sundberg B, Uggla C, Tuominen H (2000) Cambial growth and auxin gradients. In: Savidge RA, Barnett JR, Napier R (eds) Cell and molecular biology of wood formation. Bios Scientific Publishers Ltd, Oxford, pp 169–188

    Google Scholar 

  • Tang RJ, Liu H, Bao Y, Lv QD, Yang L, Zhang HX (2010) The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Mol Biol 74:367–380

    Article  CAS  PubMed  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaario LM, Yrjälä K, Rousi M, Sipilä T, Pulkkinen P (2011) Leaf number indicates salt tolerance of young seedling families of european aspen (Populus tremula L.) growing in different soils. Silva Fenn 45:19–33

    Article  Google Scholar 

  • Valladares F, Gianoli E, Gomez JM (2007) Ecological limits to plant phenotypic plasticity. New Phytol 176:749–763

    Article  PubMed  Google Scholar 

  • Vandesomele J, De-Preter K, Pattyn F, Poppe B, Van-Roy N, De-Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1–12

    Google Scholar 

  • Verlinden MS, Fichot R, Broeckx LS, Vanholme B, Boerjan W, Ceulemans R (2015) Carbon isotope compositions (δ13C) of leaf, wood and homocellulose differ among genotypes of poplar and between previous land uses in a short-rotation biomass plantation. Plant Cell Environ 38:144–156

    Article  CAS  PubMed  Google Scholar 

  • Vile D, Garnier E, Shipley B, Laurent G, Navas ML, Roumet C, Lavorel S, Díaz S, Hodgson JG, Lloret F, Midgley GF, Poorter H, Rutherford MC, Wilson PJ, Wright IJ (2005) Specific leaf area and dry matter content estimate thickness in laminar leaves. Ann Bot 96:1129–1136

    Article  PubMed  PubMed Central  Google Scholar 

  • Weih M, Hoeber S, Beyer F, Fransson P (2014) Traits to ecosystems: the ecological sustainability challenge when developing future energy crops. Front Energy Res 2:1–5

    Article  Google Scholar 

  • Wilson PJ, Thompson K, Hodgson JG (1999) Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytol 143:155–162

    Article  Google Scholar 

  • Wu Y, Deng Z, Lai J, Zhang Y, Yang C, Yin B, Zhao Q, Zhang L, Li Y, Yang C, Xie Q (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res 19:1279–1290

    Article  CAS  PubMed  Google Scholar 

  • Yadav S, Irfan F, Ahmad A, Hayat S (2011) Causes of salinity and plant manifestations to salt stress: a review. J Environ Biol 32:667–668

    PubMed  Google Scholar 

  • Zheng L, Meng Y, Ma J, Zhao X, Cheng T, Ji J, Chang E, Meng C, Deng N, Chen L, Shi S, Jiang Z (2015) Transcriptomic analysis reveals importance of ROS and phytohormones in response to short-term salinity stress in Populus tomentosa. Front Plant Sci 6:678

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhong R, McCarthy RL, Lee C, Ye Z-H (2011) Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar. Plant Physiol 157:1452–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Spanish Ministerio de Economía y Competitividad (PIM2010PKB-00702- PLANT-KBBE programme). We gratefully thank Jose Pablo de la Iglesia and Ana Parras for their technical support, and Jean-Chales Leplé for helping us in selecting normalization genes for poplar and providing the sequences for the SOS2 and ATAF1 primers. We would especially like to thank Adam Collins for the English review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hortensia Sixto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by S. Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sixto, H., González-González, B.D., Molina-Rueda, J.J. et al. Eucalyptus spp. and Populus spp. coping with salinity stress: an approach on growth, physiological and molecular features in the context of short rotation coppice (SRC). Trees 30, 1873–1891 (2016). https://doi.org/10.1007/s00468-016-1420-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1420-7

Keywords

Navigation