, Volume 20, Issue 4, pp 496-506
Date: 28 Mar 2006

Vertical canopy gradients in δ13C correspond with leaf nitrogen content in a mixed-species conifer forest

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Stable carbon isotope composition varies markedly between sun and shade leaves, with sun leaves being invariably more enriched (i.e., they contain more13C). Several hypotheses have emerged to explain this pattern, but controversy remains as to which mechanism is most general. We measured vertical gradients in stable carbon isotope composition (δ13C) in more than 200 trees of nine conifer species growing in mixed-species forests in the Northern Rocky Mountains, USA. For all species except western larch, δ13C decreased from top to bottom of the canopy. We found that δ13C was strongly correlated with nitrogen per unit leaf area (N area), which is a measure of photosynthetic capacity. Usually weaker correlations were found between δ13C and leaf mass per area, nitrogen per unit leaf mass, height from the ground, or depth in the canopy, and these correlations were more variable between trees than for N area. Gradients of δ13C (per meter canopy depth) were steeper in small trees than in tall trees, indicating that a recent explanation of δ13C gradients in terms of drought stress of upper canopy leaves is unlikely to apply in our study area. The strong relationship between N area and δ13C here reported is consistent with the general finding that leaves or species with higher photosynthetic capacity tend to maintain lower CO2 concentrations inside leaves. We conclude that photosynthetic capacity is a strong determinant of δ13C in vertical canopy profiles, and must be accounted for when interpreting δ13C values in conifer forests.

Communicated by K. Winter