Pediatric Nephrology

, 24:67

Human renal function maturation: a quantitative description using weight and postmenstrual age

  • Malin M. Rhodin
  • Brian J. Anderson
  • A. Michael Peters
  • Malcolm G. Coulthard
  • Barry Wilkins
  • Michael Cole
  • Etienne Chatelut
  • Anders Grubb
  • Gareth J. Veal
  • Michael J. Keir
  • Nick H. G. Holford
Original Article

DOI: 10.1007/s00467-008-0997-5

Cite this article as:
Rhodin, M.M., Anderson, B.J., Peters, A.M. et al. Pediatr Nephrol (2009) 24: 67. doi:10.1007/s00467-008-0997-5


This study pools published data to describe the increase in glomerular filtration rate (GFR) from very premature neonates to young adults. The data comprises measured GFR (using polyfructose, 51Cr-EDTA, mannitol or iohexol) from eight studies (n = 923) and involved very premature neonates (22 weeks postmenstrual age) to adulthood (31 years). A nonlinear mixed effects approach (NONMEM) was used to examine the influences of size and maturation on renal function. Size was the primary covariate, and GFR was standardized for a body weight of 70 kg using an allometric power model. Postmenstrual age (PMA) was a better descriptor of maturational changes than postnatal age (PNA). A sigmoid hyperbolic model described the nonlinear relationship between GFR maturation and PMA. Assuming an allometric coefficient of 3/4, the fully mature (adult) GFR is predicted to be 121.2 mL/min per 70 kg [95% confidence interval (CI) 117–125]. Half of the adult value is reached at 47.7 post-menstrual weeks (95%CI 45.1–50.5), with a Hill coefficient of 3.40 (95%CI 3.03–3.80). At 1-year postnatal age, the GFR is predicted to be 90% of the adult GFR. Glomerular filtration rate can be predicted with a consistent relationship from early prematurity to adulthood. We propose that this offers a clinically useful definition of renal function in children and young adults that is independent of the predictable changes associated with age and size.


AllometryFat-free massBody compositionGlomerular filtration rateLean body weightPostmenstrual ageRenal function



Body mass index


Body surface area


Asymmetry parameter for the sigmoid hyperbolic model


Fraction of fat mass


Fat-free mass


Glomerular filtration rate


An exponent describing the steepness of the sigmoid hyperbolic model (taken from the equation describing the oxygen dissociation curve originally described by Hill in 1910)


Normal fat mass


Computer software for nonlinear mixed effects modelling


Postmenstrual age


Postnatal age


Power exponent


The maturation half time, i.e. the time to reach 50% of mature function


Visual predictive check

Copyright information

© IPNA 2008

Authors and Affiliations

  • Malin M. Rhodin
    • 1
  • Brian J. Anderson
    • 2
    • 11
  • A. Michael Peters
    • 3
  • Malcolm G. Coulthard
    • 4
  • Barry Wilkins
    • 5
  • Michael Cole
    • 6
  • Etienne Chatelut
    • 7
  • Anders Grubb
    • 8
  • Gareth J. Veal
    • 6
  • Michael J. Keir
    • 9
  • Nick H. G. Holford
    • 10
  1. 1.Department of Pharmaceutical Biosciences, Division of Pharmacokinetics and Drug Therapy, Faculty of Pharmacy Uppsala UniversityUppsalaSweden
  2. 2.Department of AnesthesiologyUniversity of AucklandAucklandNew Zealand
  3. 3.Department of Applied PhysiologyBrighton and Sussex University Hospitals NHS TrustBrightonUK
  4. 4.Paediatric NephrologyRoyal Victoria InfirmaryNewcastleUK
  5. 5.Paediatric Intensive Care UnitThe Children’s Hospital at WestmeadWestmeadAustralia
  6. 6.Northern Institute for Cancer ResearchUniversity of NewcastleNewcastle upon TyneUK
  7. 7.EA3035 Université Paul-Sabatier and Institut Claudius-RegaudToulouseFrance
  8. 8.Department of Clinical ChemistryUniversity HospitalLundSweden
  9. 9.Department of Medical PhysicsMedical School, University of NewcastleNewcastle upon TyneUK
  10. 10.Department of Pharmacology and Clinical PharmacologyUniversity of AucklandAucklandNew Zealand
  11. 11.C/-PICUAuckland Children’s HospitalAucklandNew Zealand