Skip to main content
Log in

Explicit mixed strain-displacement finite element for dynamic geometrically non-linear solid mechanics

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Low-order finite elements face inherent limitations related to their poor convergence properties. Such difficulties typically manifest as mesh-dependent or excessively stiff behaviour when dealing with complex problems. A recent proposal to address such limitations is the adoption of mixed displacement-strain technologies which were shown to satisfactorily address both problems. Unfortunately, although appealing, the use of such element technology puts a large burden on the linear algebra, as the solution of larger linear systems is needed. In this paper, the use of an explicit time integration scheme for the solution of the mixed strain-displacement problem is explored as an alternative. An algorithm is devised to allow the effective time integration of the mixed problem. The developed method retains second order accuracy in time and is competitive in terms of computational cost with the standard irreducible formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Abbreviations

\((\bullet ):(\bullet )\) :

Double contraction of tensor (inner product).

\((\bullet )\cdot (\bullet )\) :

Single contraction of vector and tensor.

\((\bullet )^T\) :

Vector, matrix transpose.

\((\bullet )_n\) :

Variable \((\bullet )\) at time \(t_n\).

\(\varvec{\gamma }\) :

Vector of strain weighting function.

\(\varvec{\sigma }\) :

Stress tensor.

\(\varvec{\varepsilon }\) :

Small strain tensor.

\(\varvec{E}\) :

Green-Lagrange strain tensor.

\(\varvec{e}\) :

Almansi strain tensor.

\(\varvec{F}\) :

Gradient deformation tensor.

\(\varvec{N}\) :

Vector of displacement shape functions.

\(\varvec{u}\) :

Displacement field.

\(\varvec{w}\) :

Vector of displacement weighting functions.

\(\ddot{(\bullet )}\) :

Second derivative of \((\bullet )\) with respect to time \(t\).

\(\Delta t\) :

Time step.

\(\delta _{ij}\) :

Kronecker’s symbol.

\({\mathcal {P}}\) :

Projection operator.

\({\mathcal {P}}^{\perp }\) :

Orthogonal projection operator.

\(\nabla (\bullet )\) :

Gradient operator.

\(\nabla \cdot (\bullet )\) :

Divergence operator.

\(\nabla ^s(\bullet )\) :

Symmetric gradient operator \(\nabla ^s(\bullet ) \!=\! \frac{1}{2}(\nabla (\bullet ) \!+\! \nabla (\bullet )^T)\).

\(\rho \) :

Density.

\(\tau _{\varepsilon }\) :

Stabilization parameter.

\(\upsilon \) :

Poisson’s ratio.

\(\widetilde{\varepsilon }\) :

Enhancement strain.

\(E\) :

Young’s modulus.

\(h^e\) :

Finite element characteristic length.

\(l_{min}^e\) :

Minimum element length in the finite element mesh.

References

  1. de Souza NetoEA, Andrade PiresFM, Owen DRJ (2005) F-bar-based linear triangles and tetrahedra for finite strain analysis of nearly incompressible solids. Part I: formulation and benchmarking. Int J Numer Methods Eng 62(3):353–383

    Article  MATH  Google Scholar 

  2. Gil Antonio J, Hean Lee Chun, Bonet Javier, Aguirre Miquel (2014) Stabilised petrov-galerkin formulation for linear tetrahedral elements in compressible, nearly incompressible and truly incompressible fast dynamics. Comput Methods Appl Mech Eng 276:659–690

    Article  Google Scholar 

  3. David S Malkus, Hughes Thomas JR (1978) Mixed finite element methods—reduced and selective integration techniques: a unification of concepts. Comput Methods Appl Mech Eng 15(1):63–81

    Article  MATH  Google Scholar 

  4. Simo JC, Taylor RL, Pister KS (1985) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Eng 51(1–3):177–208

    Article  MATH  MathSciNet  Google Scholar 

  5. Taylor Robert L (2000) A mixed-enhanced formulation tetrahedral finite elements. Int J Numer Methods Eng 47(1–3):205–227

    Article  MATH  Google Scholar 

  6. Scovazzi G (2012) Lagrangian shock hydrodynamics on tetrahedral meshes: a stable and accurate variational multiscale approach. J Comput Phys 231(24):8029–8069

    Article  MathSciNet  Google Scholar 

  7. Cervera M, Chiumenti M, Codina R (2010) Mixed stabilized finite element methods in nonlinear solid mechanics: part I: formulation. Comput Methods Appl Mech Eng 199(37–40):2559–2570

    Article  MATH  MathSciNet  Google Scholar 

  8. Cervera M, Chiumenti M, Codina R (2010) Mixed stabilized finite element methods in nonlinear solid mechanics: part II: Strain localization. Comput Methods Appl Mech Eng 199(37–40):2571–2589

    Article  MATH  MathSciNet  Google Scholar 

  9. Codina R (2002) Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput Methods Appl Mech Eng 191(39–40):4295–4321

  10. Donea Jean, Huerta Antonio (2003) Finite element methods for flow problems, 1st edn. Wiley, Chichester

    Book  Google Scholar 

  11. Hughes Thomas JR (1995) Multiscale phenomena: Green’s functions, the dirichlet-to-neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput Methods Appl Mech Eng 127(1–4):387–401

    Article  MATH  Google Scholar 

  12. Oñate E, Valls A, García J (2006) FIC/FEM formulation with matrix stabilizing terms for incompressible flows at low and high reynolds numbers. Comput Mech 38(4–5):440–455

    Article  MATH  Google Scholar 

  13. Hughes Thomas J R, Scovazzi Guglielmo, Franca Leopoldo P (2004) Multiscale and stabilized methods. Wiley, New York

    Google Scholar 

  14. Hughes Thomas JR, Feijóo Gonzalo R, Mazzei Luca, Quincy Jean-Baptiste (1998) The variational multiscale method-a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166(1—-2):3–24 Advances in Stabilized Methods in Computational Mechanics

    Article  MATH  Google Scholar 

  15. Cervera M, Chiumenti M, Codina R (2011) Mesh objective modeling of cracks using continuous linear strain and displacement interpolations. Int J Numer Methods Eng 87(10):962–987

    Article  MATH  MathSciNet  Google Scholar 

  16. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York

    MATH  Google Scholar 

  17. Har Jason, Fulton Robert E (2003) A parallel finite element procedure for contact-impact problems. Eng Comput 19:67–84. doi:10.1007/s00366-003-0252-4

    Article  Google Scholar 

  18. Dadvand P, Rossi R, Gil M, Martorell X, Cotela J, Juanpere E, Idelsohn SR, Oñate E (2013) Migration of a generic multi-physics framework to HPC environments. Comput Fluids 80(0):301–309

    Article  MATH  Google Scholar 

  19. Dadvand P, Rossi R, Oñate E (2010) An object-oriented environment for developing finite element codes for multi-disciplinary applications. Arch Comput Methods Eng 17(3):253–297

  20. GiD (2009) The personal pre and post processor

  21. Brezzi F, Fortin M, Marini D (1991) Mixed finite element methods. Springer, New York

    Book  MATH  Google Scholar 

  22. Codina R (2000) Stabilization of incompresssibility and convection through orthogonal sub-scales in finite elements methods. Comput Meth Appl Mech Eng 190:1579–1599

    Article  MATH  MathSciNet  Google Scholar 

  23. Codina R (2008) Analysis of a stabilized finite element approximation of the oseen equations using orthogonal subscales. Appl Numer Math 58(3):264–283

  24. Larese A, Rossi R, Oñate E, Idelsohn SR (2012) A coupled pfem-eulerian approach for the solution of porous FSI problems. Comput Mech 50(6):805–819

    Article  MATH  MathSciNet  Google Scholar 

  25. Larese A, Rossi R, Oñate E, Toledo M, Morán R, Campos H. Numerical and experimental study of overtopping and failure of rockfill dams. International Journal of Geomechanics, 0(0):04014060, 0

  26. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals, 6th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  27. Zienkiewicz, OC, Taylor, RL, Baynham, JAW (1983) Mixed and irreducible formulations in finite element analysis, in hybrid and mixed finite element methods. In: Atlury SN, Gallagher RH, Zienkiewicz OC (eds.). Wiley, New York

  28. Arnold Douglas N (1990) Mixed finite element methods for elliptic problems. Comput Methods Appl Mech Eng 82(1—-3):281–300 Proceedings of the Workshop on Reliability in Computational Mechanics

    Article  MATH  Google Scholar 

  29. Arnold Douglas N, Winther Ragnar (2003) Mixed finite elements for elasticity in the stress-displacement formulation. Contemp Math 239:33–42 n Z. Chen, R. Glowinski, and K. Li, editors, Current trends in scientific computing (Xi’an, 2002)

    Article  MathSciNet  Google Scholar 

  30. Arnold Douglas N, Winther Ragnar (2002) Mixed finite elements for elasticity. Numerische Mathematik 92(3):401–419

    Article  MATH  MathSciNet  Google Scholar 

  31. Oñate E, Rojek J, Taylor RL, Zienkiewicz OC (2004) Finite calculus formulation for incompressible solids using linear triangles and tetrahedra. Int J Numer Methods Eng 59(11):1473–1500

Download references

Acknowledgments

Nelson Lafontaine thanks to MAEC-AECID scholarships for the financial support given. Funding from the Seventh Framework Programme (FP7/2007–2013) of the ERC under grant agreement n\(^\circ \) 611636 (NUMEXAS) has helped the development of this project. The authors also wish to thank Mr. Pablo Becker for his help in the revision process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Lafontaine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lafontaine, N.M., Rossi, R., Cervera, M. et al. Explicit mixed strain-displacement finite element for dynamic geometrically non-linear solid mechanics. Comput Mech 55, 543–559 (2015). https://doi.org/10.1007/s00466-015-1121-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1121-x

Keywords

Navigation