Skip to main content
Log in

Computational modeling of hypertensive growth in the human carotid artery

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Arterial hypertension is a chronic medical condition associated with an elevated blood pressure. Chronic arterial hypertension initiates a series of events, which are known to collectively initiate arterial wall thickening. However, the correlation between macrostructural mechanical loading, microstructural cellular changes, and macrostructural adaptation remains unclear. Here, we present a microstructurally motivated computational model for chronic arterial hypertension through smooth muscle cell growth. To model growth, we adopt a classical concept based on the multiplicative decomposition of the deformation gradient into an elastic part and a growth part. Motivated by clinical observations, we assume that the driving force for growth is the stretch sensed by the smooth muscle cells. We embed our model into a finite element framework, where growth is stored locally as an internal variable. First, to demonstrate the features of our model, we investigate the effects of hypertensive growth in a real human carotid artery. Our results agree nicely with experimental data reported in the literature both qualitatively and quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ambrosi D, Ateshian GA, Arruda EM, Cowin SC, Dumais J, Goriely A, Holzapfel GA, Humphrey JD, Kemkemer R, Kuhl E, Olberding JE, Taber LA, Garikipati K (2011) Perspectives on biological growth and remodeling. J Mech Phys Solids 59:863–883

    Article  MATH  MathSciNet  Google Scholar 

  2. Ateshian GA (2007) On the theory of reactive mixtures for modeling biological growth. Biomech Model Mechanbio 6:423–445

    Article  Google Scholar 

  3. Bazilevs Y, Hsu MC, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaken JG (2010) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Metods Appl Mech Eng 46:3–16

    Article  MATH  Google Scholar 

  4. Böl M, Schmitz A, Nowak G, Siebert T (2012) A three-dimensional chemo-mechanical continuum model for smooth muscle contraction. J Mech Behav Biomed Mater 13:215–229

    Article  Google Scholar 

  5. Boutouyrie P, Bussy C, Lacolley P, Girerd X, Laloux B, Laurent S (1999) Association between local pulse pressure, mean blood pressure, and large-artery remodeling. Circulation 100:1387–1393

    Article  Google Scholar 

  6. Brayden JE, Nelson MT (1992) Regulation of arterial tone by activation of calcium-dependent potassium channels. Science 256:532–535

    Article  Google Scholar 

  7. Buganza Tepole A, Ploch CJ, Wong J, Gosain AK, Kuhl E (2011) Growing skin: a computational model for skin expansion in reconstructive surgery. J Mech Phys Solids 59:2177–2190

    Article  MATH  MathSciNet  Google Scholar 

  8. Cardamone L, Valentin A, Eberth JF, Humphrey JD (2010) Modelling carotid artery adaptations to dynamic alterations in pressure and flow over the cardiac cycle. Math Med Biol 27:343–371

    Article  MATH  MathSciNet  Google Scholar 

  9. Davis MJ, Hill MA (1999) Signaling mechanisms underlying the vascular myogenic response. Physiol Rev 79:387–423

    Google Scholar 

  10. Eberth JF, Popovic N, Gresham VC, Wilson E, Humphrey JD (2010) Time course of carotid artery growth and remodeling in response to altered pulsatility. Am J Phys Heart Circ Phys 299:H1875–H1883

    Google Scholar 

  11. Famaey N, vanSloten J, Kuhl E (2013) A three-constituent damage model for arterial clamping in computer-assisted surgery. Biomech Model Mechanbio 12:123–136

    Article  Google Scholar 

  12. Feihl F, Liaudet L, Levy BI, Waeber B (2008) Hypertension and microvascular remodelling. Cardiovasc Res 78:274–285

    Article  Google Scholar 

  13. Figueroa CA, Baek S, Taylor CA, Humphrey JD (2009) A computational framework for fluid-solid-growth modeling in cardiovascular simulations. Comput Methods Appl Mech Eng 198:3583–3602

    Article  MATH  MathSciNet  Google Scholar 

  14. Flory PJ (1961) Thermodynamic relations for high elastic materials. Trans Faraday Soc 57:829–838

    Article  MathSciNet  Google Scholar 

  15. Folkow B, Grimby G, Thulesius O (1958) Adaptive structural changes of the vascular walls in hypertension and their relation to the control of the peripheral resistance. Acta Physiol Scand 44:255–272

    Article  Google Scholar 

  16. Fridez P, Makino A, Kakoi D, Miyazaki H, Meister JJ, Hayashi K, Stergiopulos N (2002) Adaptation of conduit artery vascular smooth muscle tone to induced hypertension. Ann Biomed Eng 30:905–916

    Article  Google Scholar 

  17. Fung YC, Liu S (1989) Change of residual strains in arteries due to hypertrophy caused by aortic constriction. Circ Res 65:1340– 1349

    Article  Google Scholar 

  18. Ganghoffer JF (2010) Mechanical modeling of growth considering domain variation. Part II: volumetric and surface growth involving Eshelby tensors. J Mech Phys Solids 58:1434–1459

    Article  MATH  Google Scholar 

  19. Garcia A (2012) Experimental and numerical framework for modelling vascular diseases and medical devices. PhD thesis, University of Zaragoza, Spain

  20. Gasser TC, Holzapfel GA (2002) A rate-independent elastoplastic constitutive model for biological fiber-reinforced composites at finite strains. Comput Methods Appl Mech Eng 29:340–360

    MATH  Google Scholar 

  21. Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modeling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3:15–35

    Article  Google Scholar 

  22. Gleason RL, Humphrey JD (2004) A mixture model of arterial growth and remodeling in hypertension: altered muscle tone and tissue turnover. J Vasc Res 41:352–363

    Article  Google Scholar 

  23. Gleason RL, Humphrey JD (2005) Effects of a sustained extension on arterial growth and remodeling: a theoretical study. J Biomech 38:1255–1261

    Article  Google Scholar 

  24. Göktepe S, Abilez OJ, Kuhl E (2010) A generic approach towards finite growth with examples of athlete’s heart, cardiac dilation, and cardiac wall thickening. J Mech Phys Solids 58:1661–1680

    Article  MATH  MathSciNet  Google Scholar 

  25. Göktepe S, Abilez OJ, Parker KK, Kuhl E (2010) A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis. J Theor Biol 265:433–442

    Article  Google Scholar 

  26. Goriely A, BenAmar M (2007) On the definition and modeling of incremental, cumulative, and continuous growth laws in morphoelasticity. Biomech Model Mechanobio 6:289–296

    Article  Google Scholar 

  27. Haga JH, Li YSJ, Chien S (2007) Molecular basis of the effects of mechanical stretch on vascular smooth muscle cells. J Biomech 40:947–960

    Article  Google Scholar 

  28. Himpel G, Kuhl E, Menzel A, Steinmann P (2005) Computational modelling of isotropic multiplicative growth. CMES Comp Model Eng Sci 8:119–134

    MATH  Google Scholar 

  29. Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, New York

    Google Scholar 

  30. Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61:1–48

    Article  MATH  MathSciNet  Google Scholar 

  31. Humphrey JD, Rajagopal KR (2002) A constrained mixture model for growth and remodeling of soft tissues. Math Models Methods Appl Sci 12:407–430

    Article  MATH  MathSciNet  Google Scholar 

  32. Humphrey JD, Rajagopal KR (2003) A constrained mixture model for arterial adaptations to a sustained step change in blood flow. Biomech Model Mechanbio 2:109–126

    Article  Google Scholar 

  33. Humphrey JD (2009) Need for a continuum biochemomechanical theory of soft tissue and cellular growth and remodeling. Biomechanical modelling at the molecular, cellular and tissue levels. Springer, Vienna

    Google Scholar 

  34. Humphrey JD, Holzapfel GA (2012) Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. J Biomech 45:805–814

    Article  Google Scholar 

  35. Imatani S, Maugin GA (2002) A constitutive model for material growth and its application to three-dimensional finite element analysis. Mech Res Commun 29:477–483

    Article  MATH  MathSciNet  Google Scholar 

  36. Klepach D, Lee LC, Wenk JF, Ratcliffe MB, Zohdi TI, Navia JA, Kassab GS, Kuhl E, Guccione JM (2012) Growth and remodeling of the left ventricle. Mech Res Commun 42:134–141

    Article  Google Scholar 

  37. Klisch SM, Sah RL, Hoger A (2005) A cartilage growth mixture model for infinitesimal strains: solutions of boundary-value problems related to in vitro growth experiments. Biomech Model Mechanbio 3:209–223

    Article  Google Scholar 

  38. Kuhl E, Menzel A, Steinmann P (2003) Computational modeling of growth. Comput Methods Appl Mech Eng 32:71–88

    MATH  Google Scholar 

  39. Kuhl E, Steinmann P (2003) Theory and numerics of geometrically non-linear open system mechanics. Int J Numer Meth Eng 58:1593–1615

    Article  MATH  MathSciNet  Google Scholar 

  40. Kuhl E, Steinmann P (2003) Mass- and volume-specific views on thermodynamics for open systems. Proc R Soc Lond 459:2547–2568

    Article  MATH  MathSciNet  Google Scholar 

  41. Kuhl E, Maas R, Himpel G, Menzel A (2007) Computational modeling of arterial wall growth. Biomech Model Mechanbio 6:321–331

    Article  Google Scholar 

  42. Kuhl E, Holzapfel GA (2007) A continuum model for remodeling in living structures. J Mater Sci 42:8811–8823

    Article  Google Scholar 

  43. Lee EH (1969) Elastic–plastic deformation at finite strains. J Appl Mech 36:1–6

    Article  MATH  Google Scholar 

  44. Lubarda VA, Hoger A (2002) On the mechanics of solids with a growing mass. Int J Solids Struct 39:4627–4664

    Article  MATH  Google Scholar 

  45. Marsden JE, Hughes TJR (1994) Mathematical foundations of elasticity. Dover Publications, Prentice Hall

    Google Scholar 

  46. Menzel A (2004) Modelling of anisotropic growth in biological tissues. Biomech Model Mechanobio 3:147–171

    Article  Google Scholar 

  47. Menzel A (2007) A fibre reorientation model for orthotropic multiplicative growth. Biomech Model Mechanobio 6:303–320

    Article  Google Scholar 

  48. Menzel A, Kuhl E (2012) Frontiers in growth and remodeling. Mech Res Commun 42:1–14

    Article  Google Scholar 

  49. Mulvany MJ, Aalkjaer C (1990) Structure and function of small arteries. Physiol Rev 70:921–961

    Google Scholar 

  50. O’Connell MK, Murthy S, Phan S, Xu C, Buchanan J, Spilker R, Dalman RL, Zarins CK, Denk W, Taylor CA (2008) The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3d confocal and electron microscopy imaging. Matrix Biol 27:171–181

    Article  Google Scholar 

  51. Osol G (1995) Mechanotransduction by vascular smooth muscle. J Vasc Res 32:275–292

    Google Scholar 

  52. Owens GK (1989) Control of hypertrophic versus hyperplastic growth of vascular smooth-muscle cells. Am J Physiol 257:H1755–H1765

    Google Scholar 

  53. Owens GK, Schwartz SM (1983) Vascular smooth-muscle cell hypertrophy and hyperploidy in the Goldblatt hypertensive rat. Circ Res 53:491–501

    Google Scholar 

  54. Owens GK, Rabinovitch PS, Schwartz SM (1981) Smooth-muscle cell hypertrophy versus hyperplasia in hypertension. Proc Nat Acad Sci 78:7759–7763

    Article  Google Scholar 

  55. Rausch M, Dam A, Göktepe S, Abilez OJ, Kuhl E (2011) Computational modeling of growth: systemic and pulmonary hypertension in the heart. Biomech Model Mechanobio 10:799–811

    Article  Google Scholar 

  56. Rausch M, Kuhl E (2013) On the effect of prestrain and residual stress in thin biological membranes. J Mech Phys Solids 61:1955–1969

    Article  MathSciNet  Google Scholar 

  57. Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27:455–467

    Article  Google Scholar 

  58. Rodriguez J, Goicolea JM, Gabaldon F (2007) A volumetric model for growth of arterial walls with arbitrary geometry and loads. J Biomech 40:961–971

    Article  Google Scholar 

  59. Saez P, Pena E, Martinez M, Kuhl E (2013) Mathematical modeling of collagen turnover in biological tissue. J Math Biol 67:1765–1793

    Article  MATH  MathSciNet  Google Scholar 

  60. Saez P, Pena E, Martinez M (2013) On the microstructural modeling of patient-specific human carotid artery. (in press)

  61. Schofield I, Malik R, Izzard A, Austin C, Heagerty A (2002) Vascular structural and functional changes in type 2 diabetes mellitus: evidence for the roles of abnormal myogenic responsiveness and dyslipidemia. Circulation 106:3037–3043

    Article  Google Scholar 

  62. Schubert R, Mulvany MJ (1999) The myogenic response: established facts and attractive hypotheses. Clin Sci 96:313–326

    Article  Google Scholar 

  63. Skalak R, Dasgupta G, Moss M, Otten E, Dullemeijer P, Vilmann H (1982) Analytical description of growth. J Theor Biol 94:555–577

    Article  MathSciNet  Google Scholar 

  64. Sommer G, Holzapfel GA (2012) 3d constitutive modeling of the biaxial mechanical response of intact and layer-dissected human carotid arteries. J Mech Behav Biomed 5:116–128

    Article  Google Scholar 

  65. Taber LA (1995) Biomechanics of growth, remodeling, and morphogenesis. Appl Mech Rev 48:487–545

    Article  Google Scholar 

  66. Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2012) Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. Comput Methods Appl Mech Eng 50:675–686

    MATH  MathSciNet  Google Scholar 

  67. Valentin A, Humphrey JD, Holzapfel GA (2013) A finite element-based constrained mixture implementation for arterial growth, remodeling, and adaptation: theory and numerical verification. Int J Numer Methods Biomed Eng 29:822–849

    Article  MathSciNet  Google Scholar 

  68. Wiener J, Loud AV, Giacomelli F, Anversa P (1977) Morphometric analysis of hypertension-induced hypertrophy of rat thoracic aorta. Am J Pathol 88:619–633

    Google Scholar 

  69. Zohdi TI, Holzapfel GA, Berger SA (2004) A phenomenological model for atherosclerotic plaque growth and rupture. J Theor Biol 227:437–443

    Article  Google Scholar 

  70. Zöllner AM, Abilez OJ, Böl M, Kuhl E (2012) Stretching skeletal muscle: chronic muscle lengthening through sarcomerogenesis. PLoS One 7:e45661

    Article  Google Scholar 

  71. Zöllner AM, Buganza-Tepole A, Kuhl E (2012) On the biomechanics and mechanobiology of growing skin. J Theor Biol 297:166–175

    Article  Google Scholar 

  72. Zöllner AM, Holland MA, Honda KS, Gosain AK, Kuhl E (2013) Growth on demand: reviewing the mechanobiology of stretched skin. J Mech Behav Biomed Mater 28:495–509

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Kuhl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sáez, P., Peña, E., Martínez, M.A. et al. Computational modeling of hypertensive growth in the human carotid artery. Comput Mech 53, 1183–1196 (2014). https://doi.org/10.1007/s00466-013-0959-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0959-z

Keywords

Navigation