Skip to main content

Advertisement

Log in

Mesh adaptivity driven by goal-oriented locally equilibrated superconvergent patch recovery

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Goal-oriented error estimates (GOEE) have become popular tools to quantify and control the local error in quantities of interest (QoI), which are often more pertinent than local errors in energy for design purposes (e.g. the mean stress or mean displacement in a particular area, the stress intensity factor for fracture problems). These GOEE are one of the key unsolved problems of advanced engineering applications in, for example, the aerospace industry. This work presents a simple recovery-based error estimation technique for QoIs whose main characteristic is the use of an enhanced version of the Superconvergent Patch Recovery (SPR) technique previously used for error estimation in the energy norm. This enhanced SPR technique is used to recover both the primal and dual solutions. It provides a nearly statically admissible stress field that results in accurate estimations of the local contributions to the discretisation error in the QoI and, therefore, in an accurate estimation of this magnitude. This approach leads to a technique with a reasonable computational cost that could easily be implemented into already available finite element codes, or as an independent postprocessing tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. The use of enrichment to improve recovery based error estimates for enriched approximations was discussed in detail in some of the first papers discussing derivative recovery techniques for enriched finite element approximations, see References [1114, 18, 20]. A very detailed and clear discussion of a wide variety of error estimators and adaptive procedures for discontinuous failure is provided in [34].

  2. The explanations are restricted to linear QoI. In the developments, affine quantities of the displacement will also be considered, but we will show that this particular case can be recast into the linear case.

  3. The interested reader is referred to the recent paper by Moumnassi and colleagues [44] which discusses recent advances in “ambient space finite elements” and proposes hybrid level set/FEMs able to handle sharp corners and edges.

  4. The interested reader may want to refer to [5053] regarding preconditioning techniques for systems sharing similar features.

References

  1. Ainsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. Wiley, Chichester

    Book  MATH  Google Scholar 

  2. Babuška I, Rheinboldt WC (1978) A-posteriori error estimates for the finite element method. Int J Numer Methods Eng 12(10):1597–1615

    Article  MATH  Google Scholar 

  3. Cottereau R, Díez P, Huerta A (2009) Strict error bounds for linear solid mechanics problems using a subdomain-based flux-free method. Comput Mech 44(4):533–547

    Article  MATH  MathSciNet  Google Scholar 

  4. Larsson F, Hansbo P, Runesson K (2002) Strategies for computing goal-oriented a posteriori error measures in non-linear elasticity. Int J Numer Methods Eng 55(8):879–894

    Article  MATH  MathSciNet  Google Scholar 

  5. Díez P, Parés N, Huerta A (2003) Recovering lower bounds of the error by postprocessing implicit residual a posteriori error estimates. Int J Numer Methods Eng 56(10):1465–1488

    Article  MATH  Google Scholar 

  6. Verfürth R (1996) A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley, Chichester

    MATH  Google Scholar 

  7. Stein E, Ramm E, Rannacher R (2003) Error-controlled adaptive finite elements in solid mechanics. Wiley, Chichester

    Google Scholar 

  8. Díez P, Egozcue JJ, Huerta A (1998) A posteriori error estimation for standard finite element analysis. Comput Methods Appl Mech Eng 163(1–4):141–157

    Article  MATH  Google Scholar 

  9. Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Methods Eng 24(2):337–357

    Article  MATH  MathSciNet  Google Scholar 

  10. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int J Numer Methods Eng 33(7):1331–1364

    Article  MATH  MathSciNet  Google Scholar 

  11. Bordas SPA, Duflot M (2007) Derivative recovery and a posteriori error estimate for extended finite elements. Comput Methods Appl Mech Eng 196(35–36):3381–3399

    Article  MATH  MathSciNet  Google Scholar 

  12. Bordas SPA, Duflot M, Le P (2008) A simple error estimator for extended finite elements. Commun Numer Methods Eng 24(11):961–971

    Article  MATH  MathSciNet  Google Scholar 

  13. Ródenas JJ, González-Estrada OA, Tarancón JE, Fuenmayor FJ (2008) A recovery-type error estimator for the extended finite element method based on singular+smooth stress field splitting. Int J Numer Methods Eng 76(4):545–571

    Article  MATH  Google Scholar 

  14. Duflot M, Bordas SPA (2008) A posteriori error estimation for extended finite elements by an extended global recovery. Int J Numer Methods Eng 76:1123–1138

    Article  MATH  MathSciNet  Google Scholar 

  15. Prange C, Loehnert S, Wriggers P (2012) Error estimation for crack simulations using the XFEM. Int J Numer Methods Eng 91:1459–1474

    Article  MathSciNet  Google Scholar 

  16. Hild P, Lleras V, Renard Y (2010) A residual error estimator for the XFEM approximation of the elasticity problem. Comput Mech (submitted)

  17. González-Estrada O, Natarajan S, Ródenas J, Nguyen-Xuan H, Bordas S (2012) Efficient recovery-based error estimation for the smoothed finite element method for smooth and singular linear elasticity. Comput Mech 52(1):37–52

    Google Scholar 

  18. González-Estrada O, Ródenas J, Bordas S, Duflot M, Kerfriden P, Giner E (2012) On the role of enrichment and statical admissibility of recovered fields in a-posteriori error estimation for enriched finite element methods. Eng Comput 29(8):2–2

    Google Scholar 

  19. Díez P, Ródenas JJ, Zienkiewicz OC (2007) Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error. Int J Numer Methods Eng 69(10):2075–2098

    Article  MATH  Google Scholar 

  20. Ródenas JJ, González-Estrada OA, Díez P, Fuenmayor FJ (2010) Accurate recovery-based upper error bounds for the extended finite element framework. Comput Methods Appl Mech Eng 199(37–40):2607–2621

    Article  MATH  Google Scholar 

  21. Oden JT, Prudhomme S (2001) Goal-oriented error estimation and adaptivity for the finite element method. Comput Math Appl 41(5–6):735–756

    Article  MATH  MathSciNet  Google Scholar 

  22. Ladevèze P (2006) Upper error bounds on calculated outputs of interest for linear and nonlinear structural problems. Comptes Rendus Mécanique 334(7):399–407

    Article  MATH  Google Scholar 

  23. Ladevèze P, Pelle JP (2005) Mastering calculations in linear and nonlinear mechanics. Mechanical engineering series. Springer, Berlin

    Google Scholar 

  24. Rüter M, Stein E (2006) Goal-oriented a posteriori error estimates in linear elastic fracture mechanics. Comput Methods Appl Mech Eng 195(4–6):251–278

    Article  MATH  Google Scholar 

  25. Ladevèze P, Rougeot P, Blanchard P, Moreau JP (1999) Local error estimators for finite element linear analysis. Comput Methods Appl Mech Eng 176(1–4):231–246

    Article  MATH  Google Scholar 

  26. de Almeida JPM, Pereira OJBA (2006) Upper bounds of the error in local quantities using equilibrated and compatible finite element solutions for linear elastic problems. Comput Methods Appl Mech Eng 195(4–6):279–296

    Article  MATH  Google Scholar 

  27. Cirak F, Ramm E (1998) A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem. Comput Methods Appl Mech Eng 156(1–4):351–362

    Article  MATH  MathSciNet  Google Scholar 

  28. Verfürth R (1999) A review of a posteriori error estimation techniques for elasticity problems. Comput Methods Appl Mech Eng 176:419–440

    Article  MATH  Google Scholar 

  29. Zienkiewicz OC, Taylor R (2000) The finite element method: the basis, vol 1, 5th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  30. Ladevèze P, Leguillon D (1983) Error estimate procedure in the finite element method and applications. SIAM J Numer Anal 20(3):485–509

    Article  MATH  MathSciNet  Google Scholar 

  31. Pled F, Chamoin L, Ladevèze P (2012) An enhanced method with local energy minimization for the robust a posteriori construction of equilibrated stress fields in finite element analyses. Comput Mech 49(3):357–378

    Google Scholar 

  32. Blacker T, Belytschko T (1994) Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements. Int J Numer Methods Eng 37(3):517–536

    Article  MATH  MathSciNet  Google Scholar 

  33. González-Estrada OA, Nadal E, Ródenas JJ, Kerfriden P, Bordas SPA (2012) Error estimation in quantities of interest for XFEM using recovery techniques. In: Yang ZJ (ed)20th UK National Conference of the Association for Computational Mechanics in Engineering (ACME). The University of Manchester, Manchester, pp 333–336

  34. Pannachet T, Sluys LJ, Askes H (2009) Error estimation and adaptivity for discontinuous failure. Int J Numer Methods Eng 78(5):528–563

    Article  MATH  MathSciNet  Google Scholar 

  35. Ródenas JJ, Tur M, Fuenmayor FJ, Vercher A (2007) Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. Int J Numer Methods Eng 70(6):705–727

    Article  MATH  Google Scholar 

  36. Szabó BA, Babuška I (1991) Finite element analysis. Wiley, New York

    MATH  Google Scholar 

  37. Giner E, Tur M, Fuenmayor FJ (2009) A domain integral for the calculation of generalized stress intensity factors in sliding complete contacts. Int J Solids Struct 46(3–4):938–951

    Article  MATH  Google Scholar 

  38. Ródenas JJ (2005) Goal Oriented Adaptivity: Una introducción a través del problema elástico lineal. Technical Report, CIMNE, PI274, Barcelona, Spain

  39. González-Estrada OA, Ródenas JJ, Nadal E, Bordas SPA, Kerfriden P (2011) Equilibrated patch recovery for accurate evaluation of upper error bounds in quantities of interest. Adaptive Modeling and Simulation. In: Aubry D, Díez P, Tie B, Parés N (eds) Proceedings of V ADMOS 2011. CIMNE, Paris

  40. Verdugo F, Díez P, Casadei F (2011) Natural quantities of interest in linear elastodynamics for goal oriented error estimation and adaptivity. Adaptive Modeling and Simulation. In: Aubry D, Díez P, Tie B, Parés N (eds) Proceedings of V ADMOS 2011. CIMNE, Paris

  41. Ródenas JJ, Giner E, Tarancón JE, González-Estrada OA (2006) A recovery error estimator for singular problems using singular+smooth field splitting. In: Topping BHV, Montero G, Montenegro R (eds) Fifth International Conference on Engineering Computational Technology. Civil-Comp Press, Stirling, Scotland

  42. Nadal E, Ródenas JJ, Tarancón JE, Fuenmayor FJ (2011) On the advantages of the use of cartesan grid solvers in shape optimization problems. Adaptive Modeling and Simulation. In: Aubry D, Díez P, Tie B, Parés N (eds) Proceedings of V ADMOS 2011. CIMNE, Paris

  43. Nadal E, Ródenas J, Albelda J, Tur M, Fuenmayor FJ (2013) Efficient Finite Element methodology based on Cartesian Grids. Application to structural shape optimization. Abstr Appl Anal 2013(Article ID 953786):1–19.

  44. Moumnassi M, Belouettar S, Béchet E, Bordas SPA, Quoirin D, Potier-Ferry M (2011) Finite element analysis on implicitly defined domains: an accurate representation based on arbitrary parametric surfaces. Comput Methods Appl Mech Eng 200(5–8):774–796

    Google Scholar 

  45. Belytschko T, Parimi C, Moës N, Sukumar N, Usui S (2003) Structured extended finite element methods for solids defined by implicit surfaces. Int J Numer Methods Eng 56(4):609–635

    Article  MATH  Google Scholar 

  46. Moës N, Cloirec M, Cartraud P, Remacle JF (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192(28–30):3163–3177

    Article  MATH  Google Scholar 

  47. Gordon WJ, Hall CA (1973) Construction of curvilinear co-ordinate systems and applications to mesh generation. Int J Numer Methods Eng 7(4):461–477

    Article  MATH  MathSciNet  Google Scholar 

  48. Sevilla R, Fernández-Méndez S (2008) NURBS-enhanced finite element method ( NEFEM ). Online 76(1):56–83

    MATH  Google Scholar 

  49. Béchet E, Moës N, Wohlmuth B (2009) A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method. Int J Numer Methods Eng 78:931–954

    Article  MATH  Google Scholar 

  50. Schweitzer M (2011) Stable enrichment and local preconditioning in the particle-partition of unity method. Numerische Mathematik 118(1):137–170

    Article  MATH  MathSciNet  Google Scholar 

  51. Menk A, Bordas S (2011) A robust preconditioning technique for the extended finite element method. Int J Numer Methods Eng 85(13):1609–1632

    Article  MATH  MathSciNet  Google Scholar 

  52. Hiriyur B, Tuminaro R, Waisman H, Boman E, Keyes D (2012) A quasi-algebraic multigrid approach to fracture problems based on extended finite elements. SIAM J Sci Comput 34(2):603–626

    Article  MathSciNet  Google Scholar 

  53. Gerstenberger A, Tuminaro R (2012) An algebraic multigrid approach to solve xfem based fracture problems. Int J Numer Methods Eng 94(3):248–272

    Google Scholar 

  54. Ladevèze P, Marin P, Pelle JP, Gastine JL (1992) Accuracy and optimal meshes in finite element computation for nearly incompressible materials. Comput Methods Appl Mech Eng 94(3):303–315

    Article  MATH  Google Scholar 

  55. Coorevits P, Ladevèze P, Pelle JP (1995) An automatic procedure with a control of accuracy for finite element analysis in 2D elasticity. Comput Methods Appl Mech Eng 121:91–120

    Article  MATH  Google Scholar 

  56. Li LY, Bettess P (1995) Notes on mesh optimal criteria in adaptive finite element computations. Commun Numer Methods Eng 11(11):911–915

    Article  MATH  MathSciNet  Google Scholar 

  57. Fuenmayor FJ, Oliver JL (1996) Criteria to achieve nearly optimal meshes in the h-adaptive finite element method. Int J Numer Methods Eng 39:4039–4061

    Article  MATH  Google Scholar 

  58. Abel JF, Shephard MS (1979) An algorithm for multipoint constraints in finite element analysis. Int J Numer Methods Eng 14(3):464–467

    Article  MATH  Google Scholar 

  59. Farhat C, Lacour C, Rixen D (1998) Incorporation of linear multipoint constraints in substructure based iterative solvers. Part 1: a numerically scalable algorithm. Int J Numer Methods Eng 43(6):997–1016

    Article  MATH  MathSciNet  Google Scholar 

  60. Bordas SPA, Moran B (2006) Enriched finite elements and level sets for damage tolerance assessment of complex structures. Eng Fract Mech 73(9):1176–1201

    Article  Google Scholar 

  61. Bordas S, Conley J, Moran B, Gray J, Nichols E (2007) A simulation-based design paradigm for complex cast components. Eng Comput 23(1):25–37

    Article  Google Scholar 

  62. Bordas SPA, Nguyen PV, Dunant C, Guidoum A, Nguyen-Dang H (2007) An extended finite element library. Int J Numer Methods Eng 71(6):703–732

    Article  MATH  Google Scholar 

  63. Wyart E, Coulon D, Duflot M, Pardoen T, Remacle JF, Lani F (2007) A substructured FE-shell/XFE-3D method for crack analysis in thin-walled structures. Int J Numer Methods Eng 72(7):757–779

    Article  MATH  Google Scholar 

  64. Wyart E, Duflot M, Coulon D, Martiny P, Pardoen T, Remacle JF, Lani F (2008) Substructuring FEXFE approaches applied to three-dimensional crack propagation. J Comput Appl Math 215(2):626–638

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the EPSRC Grant EP/G042705/1 “Increased Reliability for Industrially Relevant Automatic Crack Growth Simulation with the eXtended Finite Element Method”. Stéphane Bordas also thanks partial funding for his time provided by the European Research Council Starting Independent Research Grant (ERC Stg Grant Agreement No. 279578) “RealTCut Towards real time multiscale simulation of cutting in non-linear materials with applications to surgical simulation and computer guided surgery”. This work has received partial support from the research project DPI2010-20542 of the Ministerio de Economía y Competitividad (Spain). The financial support of the FPU program (AP2008-01086), the funding from Universitat Politècnica de València and Generalitat Valenciana (PROMETEO/2012/023) are also acknowledged. All authors also thank the partial support of the Framework Programme 7 Initial Training Network Funding under Grant No. 289361 “Integrating Numerical Simulation and Geometric Design Technology.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. González-Estrada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Estrada, O.A., Nadal, E., Ródenas, J.J. et al. Mesh adaptivity driven by goal-oriented locally equilibrated superconvergent patch recovery. Comput Mech 53, 957–976 (2014). https://doi.org/10.1007/s00466-013-0942-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0942-8

Keywords

Navigation