Skip to main content
Log in

Computation of residence time in the simulation of pulsatile ventricular assist devices

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A continuum-based model of particle residence time for moving-domain fluid mechanics and fluid–structure interaction (FSI) computations is proposed, analyzed, and applied to the simulation of an adult pulsatile ventricular assist device (PVAD). Residence time is a quantity of clinical interest for blood pumps because it correlates with thrombotic risk. The proposed technique may be easily implemented in any flow or FSI solver. In the context of PVADs the results of the model may be used to assess how efficiently the pump moves the blood through its interior. Three scalar measures of particle residence time are also proposed. These scalar quantities may be used in the PVAD design with the goal of reducing thrombotic risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Affeld K, Reininger J, Gadischke J, Grunert K, Schmidt S, Thiele F (1995) Fluid mechanics of the stagnation point flow chamber and its platelet deposition. Artif Organs 19(7):597–602

    Article  Google Scholar 

  2. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37

    Article  MATH  MathSciNet  Google Scholar 

  3. Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2007) YZ\(\beta \) discontinuity-capturing for advection-dominated processes with application to arterial drug delivery. Int J Numer Methods Fluids 54:593–608

    Article  MATH  MathSciNet  Google Scholar 

  4. Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310–322

    Article  MATH  MathSciNet  Google Scholar 

  5. Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades. Int J Numer Methods Fluids 65:236–253

    Article  MATH  Google Scholar 

  6. Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41

    Article  MathSciNet  Google Scholar 

  7. Bazilevs Y, Hsu M-C, Takizawa K, Tezduyar TE (2012) ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction. Math Models Methods Appl Sci 22(supp02):1230002

    Google Scholar 

  8. Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction: methods and applications. Wiley, London

  9. Benson DJ, Bazilevs Y, De Luycker E, Hsu M-C, Scott M, Hughes TJR, Belytschko T (2010) A generalized finite element formulation for arbitrary basis functions: from isogeometric analysis to XFEM. Int J Numer Methods Eng 83:765–785

    MATH  Google Scholar 

  10. Benson DJ, Bazilevs Y, Hsu M-C, Hughes TJR (2011) A large deformation, rotation-free, isogeometric shell. Comput Methods Appl Mech Eng 200:1367–1378

    Article  MATH  MathSciNet  Google Scholar 

  11. Bluestein D, Niu L, Schoephoerster R, Dewanjee M (1997) Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus. Ann Biomed Eng 25:344–356

    Article  Google Scholar 

  12. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32:199–259

    Article  MATH  MathSciNet  Google Scholar 

  13. Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech 60:371–375

    Article  MATH  MathSciNet  Google Scholar 

  14. Clark JB, Pauliks LB, Myers JL, Undar A (2011) Mechanical circulatory support for end-stage heart failure in repaired and palliated congenital heart disease. Curr Cardiol Rev 7(2):102–109

    Article  Google Scholar 

  15. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis. Toward Integration of CAD and FEA. Wiley, London

  16. David T, Thomas S, Walker PG (2001) Platelet seposition in stagnation point flow: an analytical and computational simulation. Med Eng Phys 23(5):299–312

    Article  Google Scholar 

  17. Duvernois V, Marsden AL, Shadden SC (2013) Lagrangian analysis of hemodynamics data from FSI simulation. Int J Numer Methods Biomed Eng 29:445–461

    Article  MathSciNet  Google Scholar 

  18. Esmaily-Moghadam M, Bazilevs Y, Marsden A (2013) Low entropy data mapping for sparse iterative linear solvers. In: Proceedings of the conference on extreme science and engineering discovery environment: gateway to discovery, p 2

  19. Esmaily-Moghadam M, Hsia T-Y, Marsden AL (2013) A non-discrete method for computation of residence time in fluid mechanics simulations. Phys Fluids. Published online. doi:10.1063/1.4819142

  20. Farhat C, Lesoinne M, Le Tallec P (1998) Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput Methods Appl Mech Eng 157:95–114

    Article  MATH  Google Scholar 

  21. Ho KK, Anderson KM, Kannel WB, Grossman W, Levy D (1993) Survival after the onset of congestive heart failure in framingham heart study subjects. Circulation 88:107115

    Article  Google Scholar 

  22. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  MATH  MathSciNet  Google Scholar 

  23. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349

    Article  MATH  MathSciNet  Google Scholar 

  24. Jansen KE, Whiting CH, Hulbert GM (1999) A generalized-\(\alpha \) method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190:305–319

    Article  MathSciNet  Google Scholar 

  25. Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73– 94

    Google Scholar 

  26. Jozsa J, Kramer T (2000) Modeling residence time as advection-diffusion with zero-order reaction kinetics. In: Proceedings of the hydrodynamics 2000 conference. International Association of Hydraulic Engineering and Research

  27. Jozsa J, Kramer T, Peltoniemi H (2001) Assessing water exchange mechanisms in complex lake and coastal flows by modeling the spatial distribution of mean residence time. In: CD-ROM proceedings of the XXIX IAHR Congress, Beijing, pp 73–79

  28. Kiendl J, Bazilevs Y, Hsu M-C, R. Wüchner, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199:2403–2416

    Google Scholar 

  29. Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff–Love elements. Comput Methods Appl Mech Eng 198:3902–3914

    Article  MATH  Google Scholar 

  30. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P, Stafford R, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J, American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2010) Executive summary: heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 121:948954

    Google Scholar 

  31. Long CC, Marsden AL, Bazilevs Y (2013) Fluid–structure interaction simulation of pulsatile ventricular assist devices. Comput Mech. Published online. doi:10.1007/s00466-013-0858-3

  32. Longest PW, Kleinstreuer C (2003) Particle-hemodynamics modeling of the distal end-to-side femoral bypass: effects of graft caliber and graft-end cut. Med Eng Phys 25:843–858

    Article  Google Scholar 

  33. Marsden AL, Bazilevs Y, Long CC, Behr M (2013) Recent advances in computational methodology for simulation of mechanical circulatory assist devices. Syst Biol Med. Review article (in review)

  34. Marsden AL, Feinstein JA, Taylor CA (2008) A computational framework for derivative-free optimization of cardiovascular geometries. Comput Methods Appl Mech Eng 197:1890–1905

    Article  MATH  MathSciNet  Google Scholar 

  35. Marsden AL, Wang M, Dennis JE Jr, Moin P (2007) Trailing-edge noise reduction using derivative-free optimization and large-eddy simulation. J Fluid Mech 572:13–36

    Article  MATH  MathSciNet  Google Scholar 

  36. Miller LW (2011) Left ventricular assist devices are underutilized. Circulation 123:15528

    Google Scholar 

  37. Moghadam ME, Bazilevs Y, Hsia Y-Y, Vignon-Clementel IE, Marsden AL, Modeling of Congenital Hearts Alliance (MOCHA) (2011) A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput Mech 48:277–291

    Google Scholar 

  38. Narracott A, Smith S, Lawford P, Liu H, Himeno R, Wilkinson I, Griffiths P, Hose R (2005) Development and validation of models for the investigation of blood clotting in idealized stenoses and cerebral aneurysms. Int J Artif Organs 8:56–62

    Article  Google Scholar 

  39. Nordbeck S, Rystedt B (1967) Computer cartography point-in-polygon programs. BIT Numer Math 7:39–64

    Article  MATH  Google Scholar 

  40. Ortega JM, Hartman J, Rodriguez JN, Maitland DJ (2013) Virtual treatment of basilar aneurysms using shape memory polymer foam. Ann Biomed Eng 41:725–743

    Article  Google Scholar 

  41. Rayz V, Boussel L, Ge L, Leach J, Martin A, Lawton M, McCulloch C, Saloner D (2010) Flow residence time and regions of intraluminal thrombus deposition in intracranial aneurysms. Ann Biomed Eng 38:3058–3069

    Article  Google Scholar 

  42. Reininger A, Reininger C, Heinzmann U, Wurzinger L (1995) Residence time in niches of stagnant flow determines fibrin clot formation in arterial branching model-detailed flow analysis and experimental results. Thromb Haemost 74:916–922

    Google Scholar 

  43. Sankaran S, Audet C, Marsden AL (2010) A method for stochastic constrained optimization using derivative-free surrogate pattern search and collocation. J Comput Phys 229(12):4664–4682

    Article  MATH  Google Scholar 

  44. Sankaran S, Marsden AL (2011) A stochastic collocation method for uncertainty quantification in cardiovascular simulations. J Biomech Eng 133:031001

    Article  Google Scholar 

  45. Sorensen EN, Burgreen GW, Wagner WR, Antaki JF (1999) Computational simulation of platelet deposition and activation: I. Model development and properties. Ann Biomed Eng 27:436–448

    Article  Google Scholar 

  46. Sorensen EN, Burgreen GW, Wagner WR, Antaki JF (1999) Computational simulation of platelet deposition and activation: II. Results for Poiseuille flow over collagen. Ann Biomed Eng 27:449–458

    Article  Google Scholar 

  47. Strong AB, Stubley GD, Chang G, Absolom DR (1987) Theoretical and experimental analysis of cellular adhesion to polymer surfaces. J Biomed Mater Res 21:1039–1055

    Article  Google Scholar 

  48. Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Methods Eng 19:171–225

    Article  MathSciNet  Google Scholar 

  49. Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space–time finite element computation of arterial fluid–structure interactions with patient-specific data. Int J Numer Methods Biomed Eng 26:101–116

    Article  MATH  Google Scholar 

  50. Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2011) Patient-specific arterial fluid–structure interaction modeling of cerebral aneurysms. Int J Numer Methods Fluids 65:308–323

    Article  MATH  Google Scholar 

  51. Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mech 48:247–267

    Article  MATH  MathSciNet  Google Scholar 

  52. Takizawa K, Tezduyar TE (2012) Space–time fluid–structure interaction methods. Math Models Methods Appl Sci 22(supp02):1230001

    Article  MathSciNet  Google Scholar 

  53. Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10):27–36

    Article  Google Scholar 

  54. Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods—space–time formulations, iterative strategies and massively parallel implementations. In: New methods in transient analysis, PVP-vol 246/AMD-vol 143, ASME, New York, pp 7–24

  55. Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900

    Article  MATH  MathSciNet  Google Scholar 

  56. Tezduyar TE, Sathe S, Keedy R, Stein K (2004) Space–time techniques for finite element computation of flows with moving boundaries and interfaces. In: Gallegos S, Herrera I, Botello S, Zarate F, Ayala G (eds) Proceedings of the III International Congress on Numerical Methods in Engineering and Applied Science. CD-ROM, Monterrey, Mexico

  57. Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195:2002–2027

    Google Scholar 

  58. Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43:39–49

    Article  MATH  Google Scholar 

  59. Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Methods Appl Mech Eng 195:5743–5753

    Article  MATH  MathSciNet  Google Scholar 

  60. Tezduyar TE, Schwaab M, Sathe S (2009) Sequentially-coupled arterial fluid–structure interaction (SCAFSI) technique. Comput Methods Appl Mech Eng 198:3524–3533

    Article  MATH  MathSciNet  Google Scholar 

  61. Tezduyar TE, Senga M (2006) Stabilization and shock-capturing parameters in SUPG formulation of compressible flows. Comput Methods Appl Mech Eng 195:1621–1632

    Article  MATH  MathSciNet  Google Scholar 

  62. Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space–time fluid–structure interaction modeling of patient-specific cerebral aneurysms. Int J Numer Methods Biomed Eng 27:1665–1710

    Article  MATH  MathSciNet  Google Scholar 

  63. Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46:17–29

    Article  MATH  MathSciNet  Google Scholar 

  64. Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space–time finite element computation of complex fluid–structure interactions. Int J Numer Methods Fluids 64:1201–1218

    Article  MATH  Google Scholar 

  65. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng 195:3776–3796

    Article  MATH  MathSciNet  Google Scholar 

  66. Yang W, Feinstein JA, Marsden AL (2010) Constrained optimization of an idealized Y-shaped baffle for the Fontan surgery at rest and exercise. Comput Methods Appl Mech Eng 199:2135–2149

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge funding from a Burroughs Wellcome Fund Career Award at the Scientific Interface (AM), NSF CAREER awards OCI-1150184 (AM) and OCI-1055091 (YB). We also thank Oak Ridge National Laboratory (ORNL) and the University of Tennessee for providing the HPC resources that have contributed to the research results reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Bazilevs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, C.C., Esmaily-Moghadam, M., Marsden, A.L. et al. Computation of residence time in the simulation of pulsatile ventricular assist devices. Comput Mech 54, 911–919 (2014). https://doi.org/10.1007/s00466-013-0931-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0931-y

Keywords

Navigation