Computational Mechanics

, Volume 38, Issue 4, pp 482–490

Fluid–structure Interaction Modeling of Aneurysmal Conditions with High and Normal Blood Pressures

  • Ryo Torii
  • Marie Oshima
  • Toshio Kobayashi
  • Kiyoshi Takagi
  • Tayfun E. Tezduyar
Original Paper

DOI: 10.1007/s00466-006-0065-6

Cite this article as:
Torii, R., Oshima, M., Kobayashi, T. et al. Comput Mech (2006) 38: 482. doi:10.1007/s00466-006-0065-6


Hemodynamic factors like the wall shear stress play an important role in cardiovascular diseases. To investigate the influence of hemodynamic factors in blood vessels, the authors have developed a numerical fluid–structure interaction (FSI) analysis technique. The objective is to use numerical simulation as an effective tool to predict phenomena in a living human body. We applied the technique to a patient-specific arterial model, and with that we showed the effect of wall deformation on the WSS distribution. In this paper, we compute the interaction between the blood flow and the arterial wall for a patient-specific cerebral aneurysm with various hemodynamic conditions, such as hypertension. We particularly focus on the effects of hypertensive blood pressure on the interaction and the WSS, because hypertension is reported to be a risk factor in rupture of aneurysms. We also aim to show the possibility of FSI computations with hemodynamic conditions representing those risk factors in cardiovascular disease. The simulations show that the transient behavior of the interaction under hypertensive blood pressure is significantly different from the interaction under normal blood pressure. The transient behavior of the blood-flow velocity, and the resulting WSS and the mechanical stress in the aneurysmal wall, are significantly affected by hypertension. The results imply that hypertension affects the growth of an aneurysm and the damage in arterial tissues.


Cardiovascular modeling Fluid–structure interaction Patient-specific computation Hypertension 

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Ryo Torii
    • 1
  • Marie Oshima
    • 2
  • Toshio Kobayashi
    • 3
  • Kiyoshi Takagi
    • 4
  • Tayfun E. Tezduyar
    • 5
  1. 1.Department of Chemical EngineeringImperial CollegeLondonUK
  2. 2.Institute of Industrial ScienceThe University of TokyoTokyoJapan
  3. 3.Japan Automobile Research InstituteIbarakiJapan
  4. 4.Department of NeurosurgeryOgura HospitalTokyoJapan
  5. 5.Mechanical EngineeringRice University—MS 321HoustonUSA