, Volume 27, Issue 9, pp 3465-3473
Date: 29 Mar 2013

Carbon dioxide gas pneumoperitoneum induces minimal microcirculatory changes in neonates during laparoscopic pyloromyotomy

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Background

Little is known about the direct effect of pneumoperitoneum (PP) on microcirculation and its influence on the quality of tissue perfusion. This study aimed to investigate the intraoperative effects of carbon dioxide (CO2) gas PP on microcirculation density and perfusion in neonates receiving laparoscopic surgery for hypertrophic pyloric stenosis.

Methods

In a single-center observational study, the oral microcirculation in 12 neonates receiving laparoscopic pyloromyotomy was investigated. Intraoperative hemodynamic parameters, intermittent buccal mucosa capillary density measurements (pre- and postoperative), and continuous intraoperative sublingual microcirculation measurements (i.e., vessels with a diameter <25 μm) of total vessel density, perfused vessel density, proportion of perfused blood vessels, blood vessel diameters (BVd), and microvascular flow index were obtained before (at baseline), during, and after PP insufflation for all patients using sidestream dark-field imaging for the duration of the complete surgical procedure.

Results

With the exception of a significantly elevated end-tidal CO2 (34 ± 4–40 ± 8 mmHg; p < 0.05 vs before [baseline], one-way analysis of variance [ANOVA]) during intraoperative insufflation, no significant differences were found between time points for the intraoperative hemodynamic parameters. Pre- and postoperative buccal capillary density showed no significant changes in mucosal perfusion. Analysis of continuous intraoperative sublingual microcirculation parameters exhibited a statistically significant increase in BVd during insufflation (8.8 ± 2.4–9.3 ± 2.5 μm; p < 0.05, one-way ANOVA) and a significant decrease after exsufflation (8.2 ± 2.3 μm; p < 0.01 vs during insufflation and p < 0.05 vs baseline, one-way ANOVA, respectively). No other significant differences were found between time points for the remaining microcirculatory parameters.

Conclusion

The installation of CO2 gas PP during laparoscopic pyloromyotomy procedures regulates microcirculatory perfusion by inducing changes in microvascular diameters but does not alter microcirculation density in neonates.

Stefaan H. A. J. Tytgat and Dan M. J. Milstein contributed equally to this work.