, Volume 42, Issue 4, pp 517-526
Date: 21 Jun 2008

Removing Degeneracy in LP-Type Problems Revisited

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


LP-type problems is a successful axiomatic framework for optimization problems capturing, e.g., linear programming and the smallest enclosing ball of a point set. In Matoušek and Škovroň (Theory Comput. 3:159–177, 2007), it is proved that in order to remove degeneracies of an LP-type problem, we sometimes have to increase its combinatorial dimension by a multiplicative factor of at least 1+ε with a certain small positive constant ε. The proof goes by checking the unsolvability of a system of linear inequalities, with several pages of calculations.

Here by a short topological argument we prove that the dimension sometimes has to increase at least twice. We also construct 2-dimensional LP-type problems with −∞ for which removing degeneracies forces arbitrarily large dimension increase.