Discrete & Computational Geometry

, Volume 39, Issue 1, pp 442–454

Odd Crossing Number and Crossing Number Are Not the Same

  • Michael J. Pelsmajer
  • Marcus Schaefer
  • Daniel Štefankovič

DOI: 10.1007/s00454-008-9058-x

Cite this article as:
Pelsmajer, M.J., Schaefer, M. & Štefankovič, D. Discrete Comput Geom (2008) 39: 442. doi:10.1007/s00454-008-9058-x


The crossing number of a graph is the minimum number of edge intersections in a plane drawing of a graph, where each intersection is counted separately. If instead we count the number of pairs of edges that intersect an odd number of times, we obtain the odd crossing number. We show that there is a graph for which these two concepts differ, answering a well-known open question on crossing numbers. To derive the result we study drawings of maps (graphs with rotation systems).

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Michael J. Pelsmajer
    • 1
  • Marcus Schaefer
    • 2
  • Daniel Štefankovič
    • 3
  1. 1.Department of Applied MathematicsIllinois Institute of TechnologyChicagoUSA
  2. 2.Department of Computer ScienceDePaul UniversityChicagoUSA
  3. 3.Computer Science DepartmentUniversity of RochesterRochesterUSA