Discrete & Computational Geometry

, Volume 34, Issue 4, pp 587–635

Acute Triangulations of Polygons

Article

DOI: 10.1007/s00454-005-1184-0

Cite this article as:
Streinu, I. Discrete Comput Geom (2005) 34: 587. doi:10.1007/s00454-005-1184-0

Abstract

This paper proposes a combinatorial approach to planning non-colliding trajectories for a polygonal bar-and-joint framework with n vertices. It is based on a new class of simple motions induced by expansive one-degree-of-freedom mechanisms, which guarantee noncollisions by moving all points away from each other. Their combinatorial structure is captured by pointed pseudo-triangulations, a class of embedded planar graphs for which we give several equivalent characterizations and exhibit rich rigidity theoretic properties. The main application is an efficient algorithm for the Carpenter’s Rule Problem: convexify a simple bar-and-joint planar polygonal linkage using only non-self-intersecting planar motions. A step of the algorithm consists in moving a pseudo-triangulation-based mechanism along its unique trajectory in configuration space until two adjacent edges align. At the alignment event, a local alteration restores the pseudo-triangulation. The motion continues for O(n3) steps until all the points are in convex position.

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Computer Science, Smith College, Northampton, MA 01063USA