Discrete & Computational Geometry

, Volume 30, Issue 2, pp 337–342

Note on Integral Distances

Article

DOI: 10.1007/s00454-003-0014-7

Cite this article as:
Solymosi, J. Discrete Comput Geom (2003) 30: 337. doi:10.1007/s00454-003-0014-7

Abstract

A planar point set S is called an integral set if all the distances between the elements of S are integers. We prove that any integral set contains many collinear points or the minimum distance should be relatively large if |S| is large.

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of Mathematics, University of California, San Diego, La Jolla, CA 92093-0112USA