, Volume 28, Issue 1, pp 49-73
Date: 01 Jul 2002

Classification of Integral Expanding Matrices and Self-Affine Tiles

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Let T be a self-affine tile that is generated by an expanding integral matrix A and a digit set D . It is known that many properties of T are invariant under the Z -similarity of the matrix A . In [LW1] Lagarias and Wang showed that if A is a 2 × 2 expanding matrix with |det(A)| = 2 , then the Z -similar class is uniquely determined by the characteristic polynomial of A . This is not true if |det(A)| > 2. In this paper we give complete classifications of the Z -similar classes for the cases |det(A)| =3, 4, 5 . We then make use of the classification for |det(A)| =3 to consider the digit set D of the tile and show that μ(T) >0 if and only if D is a standard digit set. This reinforces the conjecture in [LW3] on this.