Algorithmica

, Volume 27, Issue 3, pp 275–291

Diameter and Treewidth in Minor-Closed Graph Families

  • D. Eppstein

DOI: 10.1007/s004530010020

Cite this article as:
Eppstein, D. Algorithmica (2000) 27: 275. doi:10.1007/s004530010020

Abstract.

It is known that any planar graph with diameter D has treewidth O(D) , and this fact has been used as the basis for several planar graph algorithms. We investigate the extent to which similar relations hold in other graph families. We show that treewidth is bounded by a function of the diameter in a minor-closed family, if and only if some apex graph does not belong to the family. In particular, the O(D) bound above can be extended to bounded-genus graphs. As a consequence, we extend several approximation algorithms and exact subgraph isomorphism algorithms from planar graphs to other graph families.

Key words. Local treewidth, Excluded minors, Apex graphs, k -Outerplanar graphs, Approximation algorithms, Subgraph isomorphism.

Copyright information

© 2000 Springer-Verlag New York Inc.

Authors and Affiliations

  • D. Eppstein
    • 1
  1. 1.Department of Information and Computer Science, University of California, Irvine, CA 92697-3425, USA. eppstein@ics.uci.edu, http://www.ics.uci.edu/~eppstein/.US