Skip to main content
Log in

Pure Nash Equilibria in Graphical Games and Treewidth

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We treat PNE-GG, the problem of deciding the existence of a Pure Nash Equilibrium in a graphical game, and the role of treewidth in this problem. PNE-GG is known to be \(NP\)-complete in general, but polynomially solvable for graphical games of bounded treewidth. We prove that PNE-GG is \(W[1]\)-Hard when parameterized by treewidth. On the other hand, we give a dynamic programming approach that solves the problem in \(O^*(\alpha ^w)\) time, where \(\alpha \) is the cardinality of the largest strategy set and \(w\) is the treewidth of the input graph (and \(O^*\) hides polynomial factors). This proves that PNE-GG is in \(FPT\) for the combined parameter \((\alpha ,w)\). Moreover, we prove that there is no algorithm that solves PNE-GG in \(O^*((\alpha -\epsilon )^w)\) time for any \(\epsilon > 0\), unless the Strong Exponential Time Hypothesis fails. Our lower bounds implicitly assume that \(\alpha \ge 3\); we show that for \(\alpha =2\) the problem can be solved in polynomial time. Finally, we discuss the implication for computing pure Nash equilibria in graphical games (PNE-GG) of \(O(\log n)\) treewidth, the existence of polynomial kernels for PNE-GG parameterized by treewidth, and the construction of a sample and maximum-payoff pure Nash equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Here we give the payoffs as a utility function over the global configurations. Of course, the only relevant part of the global configuration is the one referring to \(\mathcal {N}(p)\) for a player \(p\in P\). The only reason we use \(St(P)\) as the domain of the function is to simplify the presentation. The same convention will be used in the proof of Theorem 4.

  2. Observe that in the case of a clique all the nodes of \(\mathcal {T}\) but one are introduce nodes. The treewidth of an \(n\)-clique is \(n-1\).

  3. Note that if the degree of the graph is bounded, then the description of the graphical game is polynomial in the number of players.

  4. The actual size of the matrices are \(|M_{w_i^k}| \le 3^3\alpha ^p\) and \(|M_{v_k}| \le \alpha ^3 3^{\alpha ^p}\).

References

  1. Becker, A., Geiger, D.: A sufficiently fast algorithm for finding close to optimal clique trees. Artif. Intell. 125(1–2), 3–17 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D., Pilipczuk, M.: An O\((c^k n)\) 5-approximation algorithm for treewidth. In: Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2013). IEEE Computer Society, pp. 499–508 (2013)

  5. Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of bounded treewidth. Comput. J. 51(3), 255–269 (2008)

    Article  MathSciNet  Google Scholar 

  6. Chen, X., Deng, X., Teng, S.-H.: Settling the complexity of computing two-player Nash equilibria. J. ACM 56(3), 14:1–14:57 (2009)

    Article  MathSciNet  Google Scholar 

  7. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Daskalakis, C., Papadimitriou, C.H.: Computing pure Nash equilibria in graphical games via Markov random fields. In: Feigenbaum, J., Chuang, J.C.-I., Pennock, D.M. (eds.) ACM Conference on Electronic Commerce. ACM, pp. 91–99 (2006)

  9. Daskalakis, C., Schoenebeck, G., Valiant, G., Valiant, P.: On the complexity of Nash equilibria of action-graph games. In: Mathieu, C. (ed.) Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2009). SIAM, pp. 710–719(2009)

  10. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, London (2013)

  11. Drucker, A.: New limits to classical and quantum instance compression. In: Proceedings of the 53rd Annual Symposium on Foundations of Computer Science (FOCS 2012). IEEE Computer Society, pp. 609–618 (2012)

  12. Estivill-Castro, V., Parsa, M.: Computing Nash equilibria gets harder: new results show hardness even for parameterized complexity. In Downey, R., Manyem, P. (eds.) Proceedings of the 15th Computing: The Australasian Theory Symposium (CATS 2009) volume 94 of Conferences in Research and Practice in Information Technology (CRPIT). Australian Computer Society, pp. 81–87 (2009)

  13. Estivill-Castro, V., Parsa, M.: Single parameter FPT-algorithms for non-trivial games. In: Iliopoulos, C.S., Smyth, W.F. (eds.) Combinatorial Algorithms - 21st International Workshop (IWOCA 2010), Lecture Notes in Computer Science, vol. 6460, pp. 121–124, Springer, Berlin (2010)

  14. Fellows, M.R., Fomin, F.V., Lokshtanov, D., Rosamond, F.A., Saurabh, S., Szeider, S., Thomassen, C.: On the complexity of some colorful problems parameterized by treewidth. Inf. Comput. 209(2), 143–153 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theoret. Comput. Sci. 410(1), 53–61 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, New York (2006)

    Google Scholar 

  17. Gottlob, G., Greco, G., Scarcello, F.: Pure Nash equilibria: hard and easy games. J. Artif. Intell. Res. 24, 357–406 (2005)

    MATH  MathSciNet  Google Scholar 

  18. Greco, G., Scarcello, F.: On the complexity of constrained Nash equilibria in graphical games. Theorert. Comput. Sci. 410(38–40), 3901–3924 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hermelin, D., Huang, C.-C., Kratsch, S., Wahlström, M.: Parameterized two-player Nash equilibrium. Algorithmica 65(4), 802–816 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jiang, A.X., Leyton-Brown, K.: Computing pure Nash equilibria in symmetric action graph games. In: Proceedings of the 22nd Conference on Artificial Intelligence (AAAI 2007). AAAI Press, Menlo Park, pp. 79–85 (2007)

  23. Jiang, A.X., Leyton-Brown, K., Bhat, N.A.: Action-graph games. Games Econ. Behav. 71(1), 141–173 (2011). Special Issue In Honor of John Nash

  24. Jiang, A.X., Safari, M.: Pure Nash equilibria: Complete characterization of hard and easy graphical games. In: van der Hoek, W., Kaminka, G.A., Lespérance, Y., Luck, M., Sen, S. (eds.) Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010) International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS), pp. 199–206 (2010)

  25. Kearns, M.J., Littman, M.L., Singh, S.P.: Graphical models for game theory. In: Breese, J.S., Koller, D. (eds.) Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence (UAI 2001). Morgan Kaufmann, San Francisco, CA, pp. 253–260 (2001)

  26. Kratsch, S.: Recent developments in kernelization: a survey. Bull. Eur. Assoc. Theoret. Comput. Sci. (EATCS) 113, 58–97 (2014)

    MathSciNet  Google Scholar 

  27. Lokshtanov, D., Marx, D., Saurabh, S.: Known algorithms on graphs on bounded treewidth are probably optimal. In: Randall, D. (ed.) Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2011). SIAM, pp. 777–789 (2011)

  28. Marx, D.: Can you beat treewidth? Theory Comput. 6(1), 85–112 (2010)

    Article  MathSciNet  Google Scholar 

  29. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  30. Papadimitriou, C.H., Roughgarden, T.: Computing correlated equilibria in multi-player games. J. ACM 55(14), 1–29 (2008)

    Article  MathSciNet  Google Scholar 

  31. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  32. Schrijver, A.: Disjoint homotopic paths and trees in a planar graph. Discret. Comput. Geom. 6(1), 527–574 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  33. Schutt, A., Stuckey, P.J.: Incremental satisfiability and implication for UTVPI constraints. INFORMS J. Comput. 22(4), 514–527 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. Takahashi, A., Ueno, S., Kajitani, Y.: Mixed searching and proper-path-width. Theoret. Comput. Sci. 137(2), 253–268 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  35. Thomas, A., van Leeuwen, J.: Treewidth and pure Nash equilibria. In: Gutin, G., Szeider, S. (eds.) Proceedings 8th International Symposium on Parameterized and Exact Computation (IPEC 2013) LNCS, vol. 8246, pp. 348–360. Springer, Berlin (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonis Thomas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, A., van Leeuwen, J. Pure Nash Equilibria in Graphical Games and Treewidth. Algorithmica 71, 581–604 (2015). https://doi.org/10.1007/s00453-014-9923-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-014-9923-3

Keywords

Navigation