Skip to main content
Log in

Sparse Fault-Tolerant Spanners for Doubling Metrics with Bounded Hop-Diameter or Degree

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We study fault-tolerant spanners in doubling metrics. A subgraph H for a metric space X is called a k-vertex-fault-tolerant t-spanner ((k,t)-VFTS or simply k-VFTS), if for any subset SX with |S|≤k, it holds that d HS (x,y)≤td(x,y), for any pair of x,yXS.

For any doubling metric, we give a basic construction of k-VFTS with stretch arbitrarily close to 1 that has optimal O(kn) edges. In addition, we also consider bounded hop-diameter, which is studied in the context of fault-tolerance for the first time even for Euclidean spanners. We provide a construction of k-VFTS with bounded hop-diameter: for m≥2n, we can reduce the hop-diameter of the above k-VFTS to O(α(m,n)) by adding O(km) edges, where α is a functional inverse of the Ackermann’s function.

Finally, we construct a fault-tolerant single-sink spanner with bounded maximum degree, and use it to reduce the maximum degree of our basic k-VFTS. As a result, we get a k-VFTS with O(k 2 n) edges and maximum degree O(k 2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1

Similar content being viewed by others

References

  1. Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.H.M.: Euclidean spanners: short, thin, and lanky. In: STOC, pp. 489–498 (1995)

    Google Scholar 

  2. Callahan, P.B., Kosaraju, S.R.: Faster algorithms for some geometric graph problems in higher dimensions. In: SODA, pp. 291–300 (1993)

    Google Scholar 

  3. Chan, T.-H.H., Gupta, A.: Small hop-diameter sparse spanners for doubling metrics. Discrete Comput. Geom. 41(1), 28–44 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chan, T.-H.H., Gupta, A., Maggs, B.M., Zhou, S.: On hierarchical routing in doubling metrics. In: SODA, pp. 762–771 (2005)

    Google Scholar 

  5. Chan, T.-H.H., Li, M., Ning, L.: Incubators vs zombies: fault-tolerant, short, thin and lanky spanners for doubling metrics (2012). arXiv:1207.0892 [cs.Os]

  6. Chazelle, B.: Computing on a free tree via complexity-preserving mappings. Algorithmica 2, 337–361 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: Fault-tolerant spanners for general graphs. In: STOC, pp. 435–444 (2009)

    Google Scholar 

  8. Czumaj, A., Zhao, H.: Fault-tolerant geometric spanners. Discrete Comput. Geom. 32(2), 207–230 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Das, G., Narasimhan, G.: A fast algorithm for constructing sparse Euclidean spanners. In: Symposium on Computational Geometry, pp. 132–139 (1994)

    Google Scholar 

  10. Dinitz, M., Krauthgamer, R.: Fault-tolerant spanners: better and simpler. In: PODC, pp. 169–178 (2011)

    Google Scholar 

  11. Dinitz, Y., Elkin, M., Solomon, S.: Shallow-low-light trees, and tight lower bounds for Euclidean spanners. In: FOCS, pp. 519–528 (2008)

    Google Scholar 

  12. Elkin, M., Solomon, S.: Narrow-shallow-low-light trees with and without steiner points. SIAM J. Discrete Math. 25(1), 181–210 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Elkin, M., Solomon, S.: Optimal Euclidean spanners: really short, thin and lanky. In: STOC (2013, to appear)

  14. Gao, J., Guibas, L.J., Nguyen, A.: Deformable spanners and applications. In: SoCG, pp. 190–199 (2004)

    Google Scholar 

  15. Gottlieb, L.-A., Roditty, L.: An optimal dynamic spanner for doubling metric spaces. In: ESA, pp. 478–489 (2008)

    Google Scholar 

  16. Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and low-distortion embeddings. In: FOCS, pp. 534–543 (2003)

    Google Scholar 

  17. Har-Peled, S., Mendel, M.: Fast construction of nets in low dimensional metrics, and their applications. In: Symposium on Computational Geometry, pp. 150–158 (2005)

    Google Scholar 

  18. Levcopoulos, C., Narasimhan, G., Smid, M.H.M.: Efficient algorithms for constructing fault-tolerant geometric spanners. In: STOC, pp. 186–195 (1998)

    Google Scholar 

  19. Lukovszki, T.: New results of fault tolerant geometric spanners. In: WADS, pp. 193–204 (1999)

    Google Scholar 

  20. Narasimhan, G., Smid, M.H.M.: Geometric Spanner Networks. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  21. Solomon, S.: Fault-tolerant spanners for doubling metrics: better and simpler (2012). arXiv:1207.7040 [cs.Os]

  22. Solomon, S., Elkin, M.: Balancing degree, diameter and weight in Euclidean spanners. In: ESA (1), pp. 48–59 (2010)

    Google Scholar 

  23. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM 22(2), 215–225 (1975)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.-H. Hubert Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, TH.H., Li, M. & Ning, L. Sparse Fault-Tolerant Spanners for Doubling Metrics with Bounded Hop-Diameter or Degree. Algorithmica 71, 53–65 (2015). https://doi.org/10.1007/s00453-013-9779-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-013-9779-y

Keywords

Navigation