Algorithmica

, Volume 60, Issue 2, pp 175–206

Common Intervals of Multiple Permutations

Article

DOI: 10.1007/s00453-009-9332-1

Cite this article as:
Heber, S., Mayr, R. & Stoye, J. Algorithmica (2011) 60: 175. doi:10.1007/s00453-009-9332-1

Abstract

Given k permutations of n elements, a k-tuple of intervals of these permutations consisting of the same set of elements is called a common interval. We present an algorithm that finds in a family of k permutations of n elements all z common intervals in optimal O(kn+z) time and O(n) additional space. Additionally, we show how to adapt this algorithm to multichromosomal and circular permutations.

This extends a result by Uno and Yagiura (Algorithmica 26:290–309, 2000) who present an algorithm to find all z common intervals of k=2 (regular) permutations in optimal O(n+z) time and O(n) space. To achieve our result, we introduce the set of irreducible intervals, a generating subset of the set of all common intervals of k permutations.

Keywords

Common intervals of permutations Multichromosomal permutations Circular permutations 

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Computer ScienceNorth Carolina State UniversityRaleighUSA
  2. 2.School of InformaticsUniversity of EdinburghEdinburghUK
  3. 3.Technische FakultätUniversität BielefeldBielefeldGermany

Personalised recommendations