, Volume 55, Issue 3, pp 395-421
Date: 19 Mar 2008

A Polynomial Quantum Algorithm for Approximating the Jones Polynomial

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The Jones polynomial, discovered in 1984, is an important knot invariant in topology. Among its many connections to various mathematical and physical areas, it is known (due to Witten) to be intimately connected to Topological Quantum Field Theory ( \({\sf{TQFT}}\) ). The works of Freedman, Kitaev, Larsen and Wang provide an efficient simulation of \({\sf{TQFT}}\) by a quantum computer, and vice versa. These results implicitly imply the existence of an efficient (namely, polynomial) quantum algorithm that provides a certain additive approximation of the Jones polynomial at the fifth root of unity, e 2π i/5, and moreover, that this problem is \({\sf{BQP}}\) -complete. Unfortunately, this important algorithm was never explicitly formulated. Moreover, the results of Freedman et al. are heavily based on \({\sf{TQFT}}\) , which makes the algorithm essentially inaccessible to computer scientists.

We provide an explicit and simple polynomial quantum algorithm to approximate the Jones polynomial of an n strands braid with m crossings at any primitive root of unity e 2π i/k , where the running time of the algorithm is polynomial in m, n and k. Our algorithm is based, rather than on \({\sf{TQFT}}\) , on well known mathematical results (specifically, the path model representation of the braid group and the uniqueness of the Markov trace for the Temperley-Lieb algebra). By the results of Freedman et al., our algorithm solves a \({\sf{BQP}}\) complete problem.

Our algorithm works by encoding the local structure of the problem into the local unitary gates which are applied by the circuit. This structure is significantly different from previous quantum algorithms, which are mostly based on the Quantum Fourier transform. Since the results of the current paper were presented in their preliminary form, these ideas have been extended and generalized in several interesting directions. Most notably, Aharonov, Arad, Eban and Landau give a simplification and extension of these results that provides additive approximations for all points of the Tutte polynomial, including the Jones polynomial at any point, and the Potts model partition function at any temperature and any set of coupling strengths. We hope and believe that the ideas presented in this work will have other extensions and generalizations.