, Volume 19, Issue 1, pp 37-44

Concentric-tube airlift bioreactors

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Gas holdup investigations were performed in three concentric-tube airlift reactors of different scales of operation (RIMP: 0.070 m3; RIS-1: 2.5 m3; RIS-2: 5.2 m3; nominal volumes). The influences of the top and bottom clearances and the flow resistances at the downcomer entrance were studied using tap water as liquid phase and air as gaseous phase, at atmospheric pressure. It was found that the gas holdup in the individual zone of the reactor: riser, downcomer and gas-separator, as well as that in the overall reactor is affected by the analyzed geometrical parameters in different ways, depending on their effects on liquid circulation velocity. Gas holdup was satisfactorily correlated with Fr, Ga, bottom spatial ratio (B), top spatial ratio (T), gas separation ratio (Y) and downcomer flow resistance ratio (A d /A R ). Correlations are presented for gas holdup in riser, downcomer, gas separator and for the total gas holdup in the reactor. All the above stressed the importance of the geometry in dynamic behaviour of airlift reactors.

Received: 11 August 1997