Skip to main content
Log in

Fermentation of de-oiled algal biomass by Lactobacillus casei for production of lactic acid

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

De-oiled algal biomass (algal cake) generated as waste byproduct during algal biodiesel production is a promising fermentable substrate for co-production of value-added chemicals in biorefinery systems. We explored the ability of Lactobacillus casei 12A to ferment algal cake for co-production of lactic acid. Carbohydrate and amino acid availability were determined to be limiting nutritional requirements for growth and lactic acid production by L. casei. These nutritional requirements were effectively addressed through enzymatic hydrolysis of the algal cake material using α-amylase, cellulase (endo-1,4-β-d-glucanase), and pepsin. Results confirm fermentation of algal cake for production of value-added chemicals is a promising avenue for increasing the overall cost competiveness of the algal biodiesel production process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Athanas AK, McCormick N (2013) Clean energy that safeguards ecosystems and livelihoods: integrated assessments to unleash full sustainable potential for renewable energy. Renew Energy 49:25–28

    Article  Google Scholar 

  2. Bates EE, Gilbert HJ, Hazlewood GP, Huckle J, Laurie JI, Mann SP (1989) Expression of a Clostridium thermocellum endoglucanase gene in Lactobacillus plantarum. Appl Environ Microbiol 55:2095–2097

    CAS  Google Scholar 

  3. Bayitse R (2015) Lactic acid production from biomass: prospect for bioresidue utilization in Ghana: technological review. Int J Appl Sci Technol 5:164–174

    Google Scholar 

  4. Binder JB, Raines RT (2010) Fermentable sugars by chemical hydrolysis of biomass. Proc Natl Acad Sci 107:4516–4521. doi:10.1073/pnas.0912073107

    Article  CAS  Google Scholar 

  5. Brandsaeter E, Nelson FE (1956) Proteolysis by Lactobacillus casei II. J Bacteriol 72:73–78

    CAS  Google Scholar 

  6. Broadbent JR, Larsen RL, Deibel V, Steele JL (2010) Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress. J Bacteriol 192:2445–2458. doi:10.1128/JB.01618-09

    Article  CAS  Google Scholar 

  7. Broadbent JR, Neeno-Eckwall EC, Stahl B, Tandee K, Cai H, Morovic W, Horvath P, Heidenreich J, Perna NT, Barrangou R, Steele JL (2012) Analysis of the Lactobacillus casei supragenome and its influence in species evolution and lifestyle adaptation. BMC Genom 13:533. doi:10.1186/1471-2164-13-533

    Article  CAS  Google Scholar 

  8. Cai H, Thompson R, Budinich MF, Broadbent JR, Steele JL (2009) Genome sequence and comparative genome analysis of Lactobacillus casei: insights into their niche-associated evolution. Genome Biol Evol 1:239–257. doi:10.1093/gbe/evp019

    Article  Google Scholar 

  9. Cho J-S, Choi Y-J, Chung D-K (2000) Expression of Clostridium thermocellum endoglucanase gene in Lactobacillus gasseri and Lactobacillus johnsonii and characterization of the genetically modified probiotic Lactobacilli. Curr Microbiol 40:257–263. doi:10.1007/s002849910051

    Article  CAS  Google Scholar 

  10. Cocconcelli PS, Gasson MJ, Morelli L, Bottazzi V (1991) Single-stranded DNA plasmid, vector construction and cloning of Bacillus stearothermophilus alpha-amylase in Lactobacillus. Res Microbiol 142:643–652

    Article  CAS  Google Scholar 

  11. Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies—a review. J Chem Technol Biotechnol 81:1119–1129. doi:10.1002/jctb.1486

    Article  CAS  Google Scholar 

  12. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  13. Gao M-T, Shimamura T, Ishida N, Takahashi H (2012) Investigation of utilization of the algal biomass residue after oil extraction to lower the total production cost of biodiesel. J Biosci Bioeng 114:330–333. doi:10.1016/j.jbiosc.2012.04.002

    Article  CAS  Google Scholar 

  14. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84. doi:10.1023/A:1020200822435

    Article  CAS  Google Scholar 

  15. Ghaffar T, Irshad M, Anwar Z, Aqil T, Zulifqar Z, Tariq A, Kamran M, Ehsan N, Mehmood S (2014) Recent trends in lactic acid biotechnology: a brief review on production to purification. J Radiat Res Appl Sci 7:222–229. doi:10.1016/j.jrras.2014.03.002

    Article  CAS  Google Scholar 

  16. Hegazi FZ, Abo-Elnaga IG (1987) Proteolytic activity of crude cell-free extract of Lactobacillus casei and Lactobacillus plantarum. Nahr 31:225–232

    Article  CAS  Google Scholar 

  17. Hols P, Ferain T, Garmyn D, Bernard N, Delcour J (1994) Use of homologous expression-secretion signals and vector-free stable chromosomal integration in engineering of Lactobacillus plantarum for alpha-amylase and levanase expression. Appl Environ Microbiol 60:1401–1413

    CAS  Google Scholar 

  18. Huang Y-B, Fu Y (2013) Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem 15:1095–1111. doi:10.1039/C3GC40136G

    Article  CAS  Google Scholar 

  19. Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9:552–571. doi:10.1111/j.1541-4337.2010.00126.x

    Article  CAS  Google Scholar 

  20. John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74:524–534. doi:10.1007/s00253-006-0779-6

    Article  CAS  Google Scholar 

  21. Jones S, Warner PJ (1990) Cloning and expression of alpha-amylase from Bacillus amyloliquefaciens in a stable plasmid vector in Lactobacillus plantarum. Lett Appl Microbiol 11:214–219

    Article  CAS  Google Scholar 

  22. Khan SA, Rashmi Hussain MZ, Prasad S, Banerjee UC (2009) Prospects of biodiesel production from microalgae in India. Renew Sustain Energy Rev 13:2361–2372. doi:10.1016/j.rser.2009.04.005

    Article  CAS  Google Scholar 

  23. Kojic M, Fira D, Banina A, Topisirovic L (1991) Characterization of the cell wall-bound proteinase of Lactobacillus casei HN14. Appl Environ Microbiol 57:1753–1757

    CAS  Google Scholar 

  24. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232. doi:10.1016/j.rser.2009.07.020

    Article  CAS  Google Scholar 

  25. McCleary BV, McNally M, Rossiter P (2002) Measurement of resistant starch by enzymatic digestion in starch and selected plant materials: collaborative study. J AOAC Int 85:1103–1111

    CAS  Google Scholar 

  26. Merrill A, Watt B (1973) Energy value of foods… basis and derivation, Agriculture Handbook No. 74. 2. USDA Agricultural Research Service, Washington, DC

  27. Moser BR (2009) Biodiesel production, properties, and feedstocks. Vitro Cell Dev Biol Plant 45:229–266. doi:10.1007/s11627-009-9204-z

    Article  CAS  Google Scholar 

  28. Narita J, Okano K, Kitao T, Ishida S, Sewaki T, Sung M-H, Fukuda H, Kondo A (2006) Display of α-amylase on the surface of Lactobacillus casei cells by use of the PgsA anchor protein, and production of lactic acid from starch. Appl Environ Microbiol 72:269–275. doi:10.1128/AEM.72.1.269-275.2006

    Article  CAS  Google Scholar 

  29. Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380

    CAS  Google Scholar 

  30. Oehlert GW (2000) A first course in design and analysis of experiments. W. H. Freema, New York

    Google Scholar 

  31. Okano K, Zhang Q, Yoshida S, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) D-lactic acid production from cellooligosaccharides and beta-glucan using L-LDH gene-deficient and endoglucanase-secreting Lactobacillus plantarum. Appl Microbiol Biotechnol 85:643–650. doi:10.1007/s00253-009-2111-8

    Article  CAS  Google Scholar 

  32. Rinaldi R, Schüth F (2009) Acid hydrolysis of cellulose as the entry point into biorefinery schemes. Chem Sus Chem 2:1096–1107. doi:10.1002/cssc.200900188

    Article  CAS  Google Scholar 

  33. Rossi F, Rudella A, Marzotto M, Dellaglio F (2001) Vector-free cloning of a bacterial endo-1,4-beta-glucanase in Lactobacillus plantarum and its effect on the acidifying activity in silage: use of recombinant cellulolytic Lactobacillus plantarum as silage inoculant. Antonie Van Leeuwenhoek 80:139–147

    Article  CAS  Google Scholar 

  34. Roy S, Kumar K, Ghosh S, Das D (2014) Thermophilic biohydrogen production using pre-treated algal biomass as substrate. Biomass Bioenergy 61:157–166. doi:10.1016/j.biombioe.2013.12.006

    Article  CAS  Google Scholar 

  35. Sambamurty AVSS (2005) A textbook of algae. I. K. International Pvt Ltd, New Delhi

    Google Scholar 

  36. Sathitsuksanoh N, Zhu Z, Zhang Y-HP (2012) Cellulose solvent-based pretreatment for corn stover and avicel: concentrated phosphoric acid versus ionic liquid [BMIM]Cl. Cellulose 19:1161–1172. doi:10.1007/s10570-012-9719-z

    Article  CAS  Google Scholar 

  37. Satoh E, Ito Y, Sasaki Y, Sasaki T (1997) Application of the extracellular alpha-amylase gene from Streptococcus bovis 148 to construction of a secretion vector for yogurt starter strains. Appl Environ Microbiol 63:4593–4596

    CAS  Google Scholar 

  38. Scheirlinck T, Mahillon J, Joos H, Dhaese P, Michiels F (1989) Integration and expression of alpha-amylase and endoglucanase genes in the Lactobacillus plantarum chromosome. Appl Environ Microbiol 55:2130–2137

    CAS  Google Scholar 

  39. Schulte EE, Hopkins BG (1996) Estimation of soil organic matter by weight loss-on-ignition. Soil Org Matter Anal Interpret 46:21–31. doi:10.2136/sssaspecpub46.c3

    CAS  Google Scholar 

  40. Shabbir Z, Tay DHS, Ng DKS (2012) A hybrid optimisation model for the synthesis of sustainable gasification-based integrated biorefinery. Chem Eng Res Des 90:1568–1581. doi:10.1016/j.cherd.2012.02.015

    Article  CAS  Google Scholar 

  41. Singh A, Olsen SI (2011) A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy 88:3548–3555. doi:10.1016/j.apenergy.2010.12.012

    Article  CAS  Google Scholar 

  42. Storer DA (1984) A simple high sample volume ashing procedure for determination of soil organic matter. Commun Soil Sci Plant Anal 15:759–772. doi:10.1080/00103628409367515

    Article  CAS  Google Scholar 

  43. Subhadra BG (2010) Sustainability of algal biofuel production using integrated renewable energy park (IREP) and algal biorefinery approach. Energy Policy 38:5892–5901. doi:10.1016/j.enpol.2010.05.043

    Article  Google Scholar 

  44. Subhadra B, Grinson-George (2011) Algal biorefinery-based industry: an approach to address fuel and food insecurity for a carbon-smart world. J Sci Food Agric 91:2–13. doi:10.1002/jsfa.4207

    Article  CAS  Google Scholar 

  45. Taylor G (2008) Biofuels and the biorefinery concept. Energy Policy 36:4406–4409. doi:10.1016/j.enpol.2008.09.069

    Article  Google Scholar 

  46. Venkata Subhash G, Venkata Mohan S (2014) Deoiled algal cake as feedstock for dark fermentative biohydrogen production: an integrated biorefinery approach. Int J Hydrog Energy 39:9573–9579. doi:10.1016/j.ijhydene.2014.04.003

    Article  CAS  Google Scholar 

  47. Vinay-Lara E, Hamilton JJ, Stahl B, Broadbent JR, Reed JL, Steele JL (2014) Genome –scale reconstruction of metabolic networks of Lactobacillus casei ATCC 334 and 12A. PLoS ONE 9:e110785. doi:10.1371/journal.pone.0110785

    Article  Google Scholar 

  48. Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799. doi:10.1126/science.1189003

    CAS  Google Scholar 

  49. Wijffels RH, Barbosa MJ, Eppink MHM (2010) Microalgae for the production of bulk chemicals and biofuels. Biofuels Bioprod Biorefining 4:287–295. doi:10.1002/bbb.215

    Article  CAS  Google Scholar 

  50. Wiles PG, Gray IK, Kissling RC (1998) Routine analysis of proteins by Kjeldahl and Dumas methods: review and interlaboratory study using dairy products. J AOAC Int 81:620–632

    CAS  Google Scholar 

  51. Yuan Z, Chen B (2012) Process synthesis for addressing the sustainable energy systems and environmental issues. AIChE J 58:3370–3389. doi:10.1002/aic.13914

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Agriculture and Food Research Initiative competitive Grant #2011-67009-30043 from the USDA National Institute of Food and Agriculture, and by the Utah Agricultural Experiment Station. It is approved as Utah Agricultural Experiment Station journal paper no. The authors thank Dr. Lance Seefeldt and the USU-BC for providing AC material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff R. Broadbent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Overbeck, T., Steele, J.L. & Broadbent, J.R. Fermentation of de-oiled algal biomass by Lactobacillus casei for production of lactic acid. Bioprocess Biosyst Eng 39, 1817–1823 (2016). https://doi.org/10.1007/s00449-016-1656-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1656-z

Keywords

Navigation