Skip to main content
Log in

Designing a gelatin/chitosan/hyaluronic acid biopolymer using a thermophysical approach for use in tissue engineering

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Cell culture on biopolymeric scaffolds has provided treatments for tissue engineering. Biopolymeric mixtures based on gelatin (Ge), chitosan (Ch) and hyaluronic acid (Ha) have been used to make scaffolds for wound healing. Thermal and physical properties of scaffolds prepared with Ge, Ch and Ha were characterized. Thermal characterization was made by using differential scanning calorimetry (DSC), and physical characterization by gas pycnometry and scanning electron microscopy. The effects of Ge content and cross-linking on thermophysical properties were evaluated by means of a factorial experiment design (central composite face centered). Gelatin content was the main factor that affects the thermophysical properties (microstructure and thermal transitions) of the scaffold. The effect of Ge content of the scaffolds for tissue engineering was studied by seeding skin cells on the biopolymers. The cell attachment was not significantly modified at different Ge contents; however, the cell growth rate increased linearly with the decrease of the Ge content. This relationship together with the thermophysical characterization may be used to design scaffolds for tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Acevedo C, Somoza R, Weinstein-Oppenheimer C, Silva S, Moreno M, Sanchez E, Albornoz F, Young M, MacNaughtan W, Enrione J (2013) Improvement of human skin cell growth by radiation-induced modifications of a Ge/Ch/Ha scaffold. Bioprocess Biosyst Eng 36:317–324

    Article  CAS  Google Scholar 

  2. Weinstein-Oppenheimer CR, Aceituno AR, Brown DI, Acevedo C, Ceriani R, Fuentes MA, Albornoz F, Henríquez-Roldán CF, Morales P, Maclean C, Tapia SM, Young ME (2010) The effect of an autologous cellular gel-matrix integrated implant system on wound healing. J Transl Med 8:59

    Article  Google Scholar 

  3. Ko CL, Tien YC, Wang JC, Chen WC (2012) Characterization of controlled highly porous hyaluronan/gelatin cross-linking sponges for tissue engineering. J Mech Behav Biomed Mater 14:227–238

    Article  CAS  Google Scholar 

  4. Li Z, Leung M, Hopper R, Ellenbogen R, Zhang M (2010) Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds. Biomaterials 31(3):404–412

    Article  CAS  Google Scholar 

  5. Miranda SC, Silva GA, Hell RC, Martins MD, Alves JB, Goes AM (2011) Three-dimensional culture of rat BMMSCs in a porous chitosan-gelatin scaffold: a promising association for bone tissue engineering in oral reconstruction. Arch Oral Biol 56:1–15

    Article  CAS  Google Scholar 

  6. Liu H, Mao J, Yao K, Yang G, Cui L, Cao Y (2004) A study on a chitosan-gelatin-hyaluronic acid scaffold as artificial skin in vitro and its tissue engineering applications. J Biomater Sci Polym Ed 15:25–40

    Article  CAS  Google Scholar 

  7. Kathuria N, Tripathi A, Kar KK, Kumar A (2009) Synthesis and characterization of elastic and macroporous chitosan-gelatin cryogels for tissue engineering. Acta Biomater 5:406–418

    Article  CAS  Google Scholar 

  8. Thein-Han WW, Saikhun J, Pholpramoo C, Misra RD, Kitiyanant Y (2009) Chitosan-gelatin scaffolds for tissue engineering: physico-chemical properties and biological response of buffalo embryonic stem cells and transfectant of GFP-buffalo embryonic stem cells. Acta Biomater 5:3453–3466

    Article  CAS  Google Scholar 

  9. Enrione J, Osorio F, Lopez D, Weinstein-Oppenheimer C, Fuentes MA, Ceriani R, Brown DI, Albornoz F, Sanchez E, Villalobos P, Somoza RA, Young ME, Acevedo CA (2010) Characterization of a gelatin/chitosan/hyaluronan scaffold-polymer. Electron J Biotechnol 13:15

    Article  Google Scholar 

  10. Iyer P, Walker KJ, Madihally SV (2012) Increased matrix synthesis by fibroblasts with decreased proliferation on synthetic chitosan-gelatin porous structures. Biotechnol Bioeng 109:1314–1325

    Article  CAS  Google Scholar 

  11. Miranda SC, Silva GA, Mendes RM, Abreu FA, Caliari MV, Alves JB, Goes AM (2012) Mesenchymal stem cells associated with porous chitosan-gelatin scaffold: a potential strategy for alveolar bone regeneration. J Biomed Mater Res A 100:2775–2786

    Google Scholar 

  12. Chang CH, Liu HC, Lin CC, Chou CH, Lin FH (2003) Gelatin-chondroitin-hyaluronan tri-copolymer scaffold for cartilage tissue engineering. Biomaterials 24:4853–4858

    Article  CAS  Google Scholar 

  13. Huang Y, Onyeri S, Siewe M, Moshfeghian A, Madihally SV (2005) In Vitro characterization of chitosan-gelatin scaffolds for tissue engineering. Biomaterials 26:7616–7627

    Article  CAS  Google Scholar 

  14. Mao JS, Zhao LG, Yin YJ, Yao KD (2003) Structure and properties of bilayer chitosan-gelatin scaffolds. Biomaterials 24:1067–1074

    Article  CAS  Google Scholar 

  15. Xia WY, Liu W, Cui L, Liu YC, Zhong W, Liu D, Wu J, Chua K, Cao Y (2004) Tissue engineering of cartilage with the use of chitosan-gelatin complex scaffolds. J Biomed Mater Res B Appl Biomater 71B:373–380

    Article  CAS  Google Scholar 

  16. Lazaridou A, Biliaderis CG (2002) Thermophysical properties of chitosan, chitosan-starch and chitosan-pullulan films near the glass transition. Carbohydr Polym 48:179–190

    Article  CAS  Google Scholar 

  17. Enrione JI, Sáez C, López D, Skurtys O, Acevedo C, Osorio F, MacNaughtan W, Hill S (2012) Structural relaxation of salmon gelatin films in the glassy state. Food Bioprocess Technol 5:2446–2453

    Article  CAS  Google Scholar 

  18. Díaz P, López D, Matiacevich S, Osorio F, Enrione J (2011) State diagram of salmon (Salmo salar) gelatin films. J Sci Food Agric 91:2558–2565

    Article  Google Scholar 

  19. Fox TG (1956) Influence of diluent and copolymer composition on the glass temperature of a polymer system. Bull Am Phys Soc 1:123

    CAS  Google Scholar 

  20. Couchman PR, Karasz FE (1978) A Classical Thermodynamic Discussion of the Effect of Composition on Glass-Transition Temperatures. Macromolecules 11:117–119

    Article  CAS  Google Scholar 

  21. Heath DE, Cooper SL (2010) Interaction of endothelial cells with methacrylic terpolymer biomaterials. J Biomed Mater Res B Appl Biomater 92(2):289–297

    Google Scholar 

  22. Heath DE, Kobe C, Jones D, Moldovan NI, Cooper SL (2013) In vitro endothelialization of electrospun terpolymer scaffolds: evaluation of scaffold type and cell source. Tissue Eng Part A 19:79–90

    Article  CAS  Google Scholar 

  23. Acevedo CA, Brown DI, Young ME, Reyes JG (2009) Senescent cultures of human dermal fibroblasts modified phenotype when immobilized in fibrin polymer. J Biomater Sci Polym Ed 20:1929–1942

    Article  CAS  Google Scholar 

  24. Marreco PR, da Luz Moreira P, Genari SC, Moraes AM (2004) Effects of different sterilization methods on the morphology, mechanical properties, and cytotoxicity of chitosan membranes used as wound dressings. J Biomed Mater Res B Appl Biomater 71:268–277

    Article  Google Scholar 

  25. Xiao J, Zhang Y, Wang J, Yu W, Wang W, Ma X (2010) Monitoring of cell viability and proliferation in hydrogel-encapsulated system by resazurin assay. Appl Biochem Biotechnol 162:1996–2007

    Article  CAS  Google Scholar 

  26. Rahman MS, Al-Saidi G, Guizani N, Abdullah (2010) A Development of state diagram of bovine gelatin by measuring thermal characteristics using differential scanning calorimetry (DSC) and cooling curve method. Thermochim Acta 509:111–119

    Article  CAS  Google Scholar 

  27. Yakimets I, Wellner N, Smith AC, Wilson RH, Farhat I, Mitchell J (2005) Mechanical properties with respect to water content of gelatin films in glassy state. Polymer 46:12577–12585

    Article  CAS  Google Scholar 

  28. Sobral PJA, Menegalli FC, Hubinger MD, Roques MA (2001) Mechanical, water vapor barrier and thermal properties of gelatin based edible films. Food Hydrocoll 15:423–432

    Article  CAS  Google Scholar 

  29. Badii F, Martinet C, Mitchell JR, Farhat I (2006) Enthalpy and mechanical relaxation of glassy gelatin films. Food Hydrocoll 20:879–884

    Article  CAS  Google Scholar 

  30. Badii F, MacNaughtan W, Farhat IA (2005) Enthalpy relaxation of gelatin in the glassy state. Int J Biol Macromol 36:263–269

    Article  CAS  Google Scholar 

  31. Coppola M, Djabourov M, Ferrand M (2008) Phase diagram of gelatin plasticized by water and glycerol. Macromol Symp 273:56–65

    Article  CAS  Google Scholar 

  32. Slade L, Levine H (1995) Glass transition and water-food structure interactions. Adv Food Res 38:103–269

    Article  CAS  Google Scholar 

  33. Lee YH, Lee JH, An IG, Kim C, Lee DS, Lee YK, Nam JD (2005) Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds. Biomaterials 26:3165–3172

    Article  CAS  Google Scholar 

  34. Cooper JA, Lu HH, Ko FK, Freeman JW, Laurencin CT (2005) Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials 26:1523–1532

    Article  CAS  Google Scholar 

  35. Huang Y, Onyeri S, Siewe M, Moshfeghian A, Madihally SV (2005) In vitro characterization of chitosan–gelatin scaffolds for tissue engineering. Biomaterials 26:7616–7627

    Article  CAS  Google Scholar 

  36. Madihally SV, Matthew HW (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20:1133–1142

    Article  CAS  Google Scholar 

  37. Huang Y, Siewe M, Madihally SV (2006) Effect of spatial architecture on cellular colonization. Biotechnol Bioeng 93:64–75

    Article  CAS  Google Scholar 

  38. Zhang F, He C, Cao L, Feng W, Wang H, Mo X, Wang J (2011) Fabrication of gelatin-hyaluronic acid hybrid scaffolds with tunable porous structures for soft tissue engineering. Int J Biol Macromol 48:474–481

    Article  CAS  Google Scholar 

  39. Bowers KT, Keller JC, Randolph BA, Wick DG, Michaels CM (1992) Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int J Oral Maxillofac Implants 7:302–310

    CAS  Google Scholar 

  40. Anselme K (2000) Osteoblast adhesion on biomaterials. Biomaterials 21:667–681

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank CONICYT from Chile for FONDECYT Grant 1120166.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian A. Acevedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enrione, J., Díaz-Calderón, P., Weinstein-Oppenheimer, C.R. et al. Designing a gelatin/chitosan/hyaluronic acid biopolymer using a thermophysical approach for use in tissue engineering. Bioprocess Biosyst Eng 36, 1947–1956 (2013). https://doi.org/10.1007/s00449-013-0971-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-0971-x

Keywords

Navigation