Skip to main content
Log in

Effect of aeration and agitation on the protease production by Staphylococcus aureus mutant RC128 in a stirred tank bioreactor

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The modified rotating simplex method has been successfully used to determine the best combination of agitation rate and aeration rate for maximum production of extracellular proteases by Staphylococcus aureus mutant RC128, in a stirred tank bioreactor operated in a discontinuous way. This mutant has shown altered exoprotein production, specially enhanced protease production. Maximum production of proteases (15.28 UP/ml), measured using azocasein as a substrate, was obtained at exponential growth phase when the bioreactor was operated at 300 rpm and at 2 vvm with a volumetric oxygen transfer coefficient (K L a) of 175.75 h−1. These conditions were found to be more suitable for protease production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Milavec P, Podornik A, Stravs R, Koloini T (2002) Effect of experimental error on the efficiency of different optimization methods for bioprocess media optimization. Bioprocess Biosyst Eng 25:68–78

    Google Scholar 

  2. Xu CP, Sinha J, Bae JT, Kim SW, Yun JW (2006) Optimization of physical parameters for exo-biopolymer production in submeged mycelial cultures of two entomopathogenic fungi Paecilomyces japonica and Paecilomyces tenuipes. Lett Appl Microbiol 42:501–506

    Article  CAS  Google Scholar 

  3. Kolossváry GJ (1996) Optimization of lipase activity from Rhizopus sp. in triglyceride hydrolisis using a modified simplex method. Process Biochem 6:595–600

    Article  Google Scholar 

  4. Tinoi J, Rakariyatham N, Deming RL (2005) Simplex optimization of carotenoid production by Rhodotorula glutinis using hydrolyzed mung bean waste flour as substrate. Process Biochem 40:2551–2557

    Article  CAS  Google Scholar 

  5. Panda T, Naidu GSN, Sinha J (1999) Multiresponse analysis of microbiological parameters affecting the production of of pectolytic enzymes by Aspergillus niger: a statistical review. Pcocess Biochem 35:187–195

    Article  CAS  Google Scholar 

  6. Felse AP, Panda T (1999) Self-directing optimization of parameters for extracellular chitinase production by Trichoderma harzianum in batch mode. Bioprocess Eng 34:563–566

    CAS  Google Scholar 

  7. Gupta R, Beg QK, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32

    Article  CAS  Google Scholar 

  8. Çalik P, Çalik G, Özdamar T (1998) Oxygen transfer effects in serine alkaline protease fermentation by Bacillus licheniformis: Use of citric acid as the carbon source. Enzyme Microb Technol 23:451–461

    Article  Google Scholar 

  9. Hwang YB, Lee AC, Chang HN, Chang YK (1991) Dissolved oxygen concentration regulations using auto tunning proportional integral derivative controller in fermentation process. Biotechnol Tech 5:85–90

    Article  CAS  Google Scholar 

  10. Arvidson S, Holme T, Wadström T (1970) Formation of Bacteriolytic Enzymes in Batch and Continuous Culture of Staphylococcus aureus. J Bacteriol 104:227–233

    CAS  Google Scholar 

  11. Carpenter D, Silverman G (1976) Synthesis of staphylococcal enterotoxin A and nuclease under controlled fermentor conditions. Appl Environ Microbiol 31:243–248

    CAS  Google Scholar 

  12. Vadehra DA, Harmon LG (1969) Factors affecting production of staphylococcal lipase. J Appl Bacteriol 32:147–150

    CAS  Google Scholar 

  13. Drapeau GR, Boily Y, Hourmard J (1972) Purification and propierties of an extracellular protease of Staphylococcus aureus. J Biol Chem 247:6720–6726

    CAS  Google Scholar 

  14. Kim S, Park KS, Byun SM, Pan JG, Shin YC (1995) Overproduction of Serratia marcescens metalloprotease (SMP) from the recombinant Serratia marcescens strains. Microb Lett 17:497–502

    CAS  Google Scholar 

  15. Giraudo A, Martínez G, Calzolari A, Nagel R (1994) Characterization of a Tn925-induced mutant of Staphylococcus aureus alterd in exoprotein production. J Basic Microbiol 34:317–322

    Article  CAS  Google Scholar 

  16. Takeuchi S, Kinoshita T, Kaidoh T, Hashizume N (1999) Purifiction and caracterization of protease produced by Staphylococcus aureus isolated from a diseased chicken. Vet Microbiol 67:195–202

    Article  CAS  Google Scholar 

  17. Bailey J, Ollis D (1986) Biochemical engineering fundamentals. Mc Graw-Hill, New York

    Google Scholar 

  18. Bradford M (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  19. Nelder JA, Mead RA (1965) A simplex method for function minimization. Comput J 7:308–313

    Google Scholar 

  20. Bandyopadhyay B, Humphrey A, Taguchi H (1967) Dynamic measurement of volumetric oxygen transfer coefficient in fermentation systems. Biotechnol Bioeng 9:533–544

    Article  CAS  Google Scholar 

  21. Ruchti G, Dunn IJ, Bourne JR (1981) Comparison of dynamic oxygen electrode methods for the measurement of KLa. Biotechnol Bioeng 23:277–290

    Article  CAS  Google Scholar 

  22. Dang NDP, Karrer DA, Dunn IJ (1977) Oxygen transfer coefficients by dynamic model moment analysis. Biotechnol Bioeng 19:853–865

    Article  CAS  Google Scholar 

  23. Märkl H, Bronnenmeier R (1985) Mechanical stress and microbial production. In: Rehm HJ, Reed G (eds) Biotechnology. Fundamentals of biochemical engineering, vol 2. H. Brauer, VCH Weinheim, Germany, pp 369–392

  24. Thomas CR (1990) Problems of shear in biotechnology. In: Winkler MA (ed) Chemical engineering problems in biotechnology. Elsevier Applied Science, London, pp 23–92

    Google Scholar 

  25. Van’t Riet K (1979) Review of measuring methods and results in nonviscous gas-liquid mass transfer in stirred vessels. Nid Eng Chem Process Des Dev 18:357–364

    Article  CAS  Google Scholar 

  26. Ustáriz F, Laca A, García L, Díaz M (2004) Fermentation of individual proteins for protease production by Serratia marcescens. Biochem Eng J 19:147–153

    Article  Google Scholar 

  27. Beg Q, Sahai V, Gupta R (2003) Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Process Biochem 39:203–209

    Article  CAS  Google Scholar 

  28. Genckal H, Tari C (2006) Alkaline protease production from alkalophilic Bacillus sp. isolated from natural habitats. Enzyme Microb Technol 39:703–710

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the support given by the Secretaría de Ciencia y Técnica Universidad Nacional de Río Cuarto (UNRC), Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ducros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ducros, E., Ferrari, M., Pellegrino, M. et al. Effect of aeration and agitation on the protease production by Staphylococcus aureus mutant RC128 in a stirred tank bioreactor. Bioprocess Biosyst Eng 32, 143–148 (2009). https://doi.org/10.1007/s00449-008-0233-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-008-0233-5

Keywords

Navigation