, Volume 120, Issue 2, pp 242-251

Effects of temperature on performance and phenotypic selection on plant traits in alpine Ranunculus acris

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Discovering temperature effects on the performance of tundra plants is important in the light of expected climate change. In this 4-year study on alpine Ranunculus acris, I test the hypothesis that temperature influences flowering phenology, reproductive success, growth, population dynamics, and phenotypic selection on quantitative traits, by experimental warming using open-top chambers (OTCs). Warming significantly advanced flowering phenology in only one season. Seed number and weight were significantly increased by warming during the first three seasons, but not in the fourth. Plants inside OTCs produced bigger leaves than control plants in the fourth season, but leaf number was unaffected by the OTC treatment. Despite increased seed number and weight, the density of flowering plants decreased inside OTCs compared to control plots, possibly because of a higher graminoid cover inside OTCs. Phenotypic-selection regression showed a significant selection differential and gradient in the direction of larger leaf sizes in control plants, whereas no selection on leaf size was detected on warmed plants. The direction and strength of selection on flowering time, flower number, and leaf number did not differ between control and warmed plants. The results suggest that increased reproductive output of R. acris may not be sufficient to maintain current population density under a denser vegetation cover.

Received: 1 December 1998 / Accepted: 14 April 1999