Skip to main content

Advertisement

Log in

A naturally heterogeneous landscape can effectively slow down the dispersal of aquatic microcrustaceans

  • Community ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Several studies have suggested that aquatic microcrustaceans are relatively efficient dispersers in a variety of landscapes, whereas others have indicated dispersal limitation at large spatial scales or under specific circumstances. Based on a survey of a set of recently created ponds in an area of approximately 18 × 25 km, we found multiple indications of dispersal limitation affecting the community assembly of microcrustacean communities. Spatial patterns in the community composition were better explained by the geomorphological structure of the landscape than by mere geographic distances. This suggests that ridges separating the network of valleys act as dispersal barriers, and as such may channel the dispersal routes of the studied taxa and, likely, also of their animal vectors. Dispersal limitation was further supported by a strong positive relationship between species richness and the abundance of neighboring water bodies, suggesting that isolation affects colonization rates. Finally, the apparent dispersal limitation of microcrustaceans is further corroborated by the observation of low colonization rates in newly dug experimental ponds in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alahuhta J, Johnson LB, Olker J, Heino J (2014) Species sorting determines variation in the community composition of common and rare macrophytes at various spatial extents. Ecol Complex 20:61–68. doi:10.1016/j.ecocom.2014.08.003

    Article  Google Scholar 

  • Allen PE, Dodson SI (2011) Land use and ostracod community structure. Hydrobiologia 668:203–219. doi:10.1007/s10750-011-0711-7

    Article  CAS  Google Scholar 

  • Allen MR, VanDyke JN, Cáceres CE (2011) Metacommunity assembly and sorting in newly formed lake communities. Ecology 92:269–275. doi:10.1890/10-0522.1

    Article  PubMed  Google Scholar 

  • Amoros C (1984) Crustacés Cladocères. Bulletin mensuel de la Société Linnéenne de Lyon 53:72–145

    Google Scholar 

  • Angeler DG, Alvarez-Cobelas M (2005) Island biogeography and landscape structure: integrating ecological concepts in a landscape perspective of anthropogenic impacts in temporary wetlands. Environ Pollut 138:420–424. doi:10.1016/j.envpol.2005.04.020

    Article  CAS  PubMed  Google Scholar 

  • Anusa A, Ndagurwa HGT, Magadza CHD (2012) The influence of pool size on species diversity and water chemistry in temporary rock pools on Domboshawa Mountain, northern Zimbabwe. Afr J Aquat Sci 37:89–99. doi:10.2989/16085914.2012.666378

    Article  CAS  Google Scholar 

  • Auffret AG, Plue J (2014) Scale-dependent diversity effects of seed dispersal by a wild herbivore in fragmented grasslands. Oecologia 175:305–313. doi:10.1007/s00442-014-2897-7

    Article  PubMed  Google Scholar 

  • Beisner BE, Peres-Neto PR, Lindstrom ES, Barnett A, Longhi ML (2006) The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87:2985–2991. doi:10.1890/0012-9658(2006)87[2985:troeas]2.0.co;2

    Article  PubMed  Google Scholar 

  • Bell JR, Bohan DA, Shaw EM, Weyman GS (2005) Ballooning dispersal using silk: world fauna, phylogenies, genetics and models. Bull Entomol Res 95:69–114. doi:10.1079/BER2004350

    Article  CAS  PubMed  Google Scholar 

  • Beran L et al (1999) Plán péče o chráněnou krajinnou oblast Kokořínsko—Mělník: Správa chráněných krajinných oblastí ČR—Správa CHKO Kokořínsko

  • Bohonak AJ, Jenkins DG (2003) Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecol Lett 6:783–796. doi:10.1046/j.1461-0248.2003.00486.x

    Article  Google Scholar 

  • Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New York

    Book  Google Scholar 

  • Braun-Blanquet J, Conard HS, Fuller GD (1932) Plant sociology; the study of plant communities. McGraw-Hill, New York

    Google Scholar 

  • Brunet J, Valtinat K, Mayr ML, Felton A, Lindbladh M, Bruun HH (2011) Understory succession in post-agricultural oak forests: habitat fragmentation affects forest specialists and generalists differently. For Ecol Manag 262:1863–1871. doi:10.1016/j.foreco.2011.08.007

    Article  Google Scholar 

  • Cacéres CE, Soluk DA (2002) Blowing in the wind: a field test of overland dispersal and colonization by aquatic invertebrates. Oecologia 131:402–408. doi:10.1007/s00442-002-0897-5

    Article  Google Scholar 

  • Cohen GM, Shurin JB (2003) Scale-dependence and mechanisms of dispersal in freshwater zooplankton. Oikos 103:603–617. doi:10.1034/j.1600-0706.2003.12660.x

    Article  Google Scholar 

  • Cornell HV, Lawton JH (1992) Species interactions, local and regional processes, and limits to the richness of ecological communities: a theoretical perspective. J Anim Ecol 61:1–12. doi:10.2307/5503

    Article  Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, Chichester

    Book  Google Scholar 

  • Davidson TA, Mackay AW, Wolski P, Mazebedi R, Murray-Hudson M, Todd M (2012) Seasonal and spatial hydrological variability drives aquatic biodiversity in a flood-pulsed, sub-tropical wetland. Freshw Biol 57:1253–1265. doi:10.1111/j.1365-2427.2012.02795.x

    Article  CAS  Google Scholar 

  • De Bie T, De Meester L, Brendonck L, Martens K, Goddeeris B, Ercken D, Hampel H, Denys L, Vanhecke L, Van der Gucht K, Van Wichelen J, Vyverman W, Declerck SAJ (2012) Body size and dispersal mode as key traits determining metacommunity structure of aquatic organism. Ecol Lett 15:740–747. doi:10.1111/j.1461-0248.2012.01794.x

    Article  PubMed  Google Scholar 

  • De Meester L, Gómez A, Okamura B, Schwenk K (2002) The monopolization hypothesis and the dispersal–gene flow paradox in aquatic organisms. Acta Oecol 23:121–135. doi:10.1016/S1146-609X(02)01145-1

    Article  Google Scholar 

  • Declerck SAJ, Vanderstukken M, Pals A, Muylaert K, De Meester L (2007) Plankton biodiversity along a gradient of productivity and its mediation by macrophytes. Ecology 88:2199–2210. doi:10.1890/07-0048.1

    Article  CAS  PubMed  Google Scholar 

  • Declerck SAJ, Bakker ES, van Lith B, Kersbergen A, Van Donk E (2011a) Effects of nutrient additions and macrophyte composition on invertebrate community assembly and diversity in experimental ponds. Basic Appl Ecol 12:466–475. doi:10.1016/j.baae.2011.05.001

    Article  Google Scholar 

  • Declerck SAJ, Coronel JS, Legendre P, Brendonck L (2011b) Scale dependency of processes structuring metacommunities of cladocerans in temporary pools of High-Andes wetlands. Ecography 34:296–305. doi:10.1111/j.1600-0587.2010.06462.x

    Article  Google Scholar 

  • Diniz-Filho JAF, Siqueira T, Padial AA, Rangel TF, Landeiro VL, Bini LM (2012) Spatial autocorrelation analysis allows disentangling the balance between neutral and niche processes in metacommunities. Oikos 121:201–210. doi:10.1111/j.1600-0706.2011.19563.x

    Article  Google Scholar 

  • Einsle U (1996) Copepoda: Cyclopoida: genera Cyclops, Megacyclops. SPB, Amsterdam

    Google Scholar 

  • Ellis CJ (2012) Lichen epiphyte diversity: a species, community and trait-based review. Perspect Plant Ecol Evol Syst 14:131–152. doi:10.1016/j.ppees.2011.10.001

    Article  Google Scholar 

  • Figuerola J, Green AJ (2002) Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshw Biol 47:483–494. doi:10.1046/j.1365-2427.2002.00829.x

    Article  Google Scholar 

  • Flößner D (2000) Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas. Backhuys, Leiden

    Google Scholar 

  • Frisch D, Green AJ (2007) Copepods come in first: rapid colonization of new temporary ponds. Archiv Hydrobiol 168:289–297. doi:10.1127/1863-9135/2007/0168-0289

    Article  Google Scholar 

  • Frisch D, Moreno-Ostos E, Green AJ (2006) Species richness and distribution of copepods and cladocerans and their relation to hydroperiod and other environmental variables in Doñana, south-west Spain. Hydrobiologia 556:327–340. doi:10.1007/s10750-005-1305-z

    Article  Google Scholar 

  • Frisch D, Cottenie K, Badosa A, Green AJ (2012) Strong spatial influence on colonization rates in a pioneer zooplankton metacommunity. PLoS ONE 7:e40205. doi:10.1371/journal.pone.0040205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert B, Bennett JR (2010) Partitioning variation in ecological communities: do the numbers add up? J Appl Ecol 47:1071–1082. doi:10.1111/j.1365-2664.2010.01861.x

    Article  Google Scholar 

  • Gonçalves-Souza T, Romero GQ, Cottenie K (2014) Metacommunity versus biogeography: a case study of two groups of Neotropical vegetation-dwelling arthropods. PLoS ONE 9:e115137. doi:10.1371/journal.pone.0115137

    Article  PubMed  PubMed Central  Google Scholar 

  • Green AJ, Figuerola J, Sánchez MI (2002) Implications of waterbird ecology for the dispersal of aquatic organisms. Acta Oecol 23:177–189. doi:10.1016/S1146-609X(02)01149-9

    Article  Google Scholar 

  • Green AJ, Frisch D, Michot TC, Allain LK, Barrow WC (2013) Endozoochory of seeds and invertebrates by migratory waterbirds in Oklahoma, USA. Limnetica 32:39–46

    Google Scholar 

  • Hamrová E, Krajíček M, Karanovic T, Černý M, Petrusek A (2012) Congruent patterns of lineage diversity in two species complexes of planktonic crustaceans, Daphnia longispina (Cladocera) and Eucyclops serrulatus (Copepoda), in East European mountain lakes lakes. Zool J Linn Soc Lond 166:754–767. doi:10.1111/j.1096-3642.2012.00864.x

    Article  Google Scholar 

  • Hanski I (1998) Metapopulation dynamics. Nature 396:41–49. doi:10.1038/23876

    Article  CAS  Google Scholar 

  • Jäger IS, Hölker F, Flöder S, Walz N (2011) Impact of Chaoborus flavicans—predation on the zooplankton in a mesotrophic lake—a three year study. Int Rev Hydrobiol 96:191–208. doi:10.1002/iroh.201011253

    Article  Google Scholar 

  • Jenkins DG (1995) Dispersal-limited zooplankton distribution and community composition in new ponds. Hydrobiologia 313:15–20. doi:10.1007/BF00025926

    Article  Google Scholar 

  • Jenkins DG, Buikema AL Jr (1998) Do similar communities develop in similar sites? A test with zooplankton structure and function. Ecol Monogr 68:421–443. doi:10.1890/0012-9615(1998)068[0421:DSCDIS]2.0.CO;2

    Article  Google Scholar 

  • Jiménez JJ, Decaëns T, Lavelle P, Rossi JP (2014) Dissecting the multi-scale spatial relationship of earthworm assemblages with soil environmental variability. BMC Ecol 14:26. doi:10.1186/s12898-014-0026-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Juračka PJ, Kořínek V, Petrusek A (2010) A new Central European species of the Daphnia curvirostris complex, Daphnia hrbaceki sp. nov. (Cladocera, Daphniidae). Zootaxa 2718:1–22

    Google Scholar 

  • Kappes H, Tackenberg O, Haase P (2014) Differences in dispersal- and colonization-related traits between taxa from the freshwater and the terrestrial realm. Aquat Ecol 48:73–83. doi:10.1007/s10452-013-9467-7

    Article  CAS  Google Scholar 

  • Kopáček J, Hejzlar J (1993) Semi-micro determination of total phosporus in fresh waters with perchloric acid digestion. Int J Environ Anal Chem 53:173–183. doi:10.1080/03067319308045987

    Article  Google Scholar 

  • Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24. doi:10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2

    Article  Google Scholar 

  • Leibold MA, Norberg J (2004) Biodiversity in metacommunities: plankton as complex adaptive systems? Limnol Oceanogr 49:1278–1289. doi:10.4319/lo.2004.49.4_part_2.1278

    Article  Google Scholar 

  • Leibold MA et al (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613. doi:10.1111/j.1461-0248.2004.00608.x

    Article  Google Scholar 

  • Lindo Z, Winchester NN (2009) Spatial and environmental factors contributing to patterns in arboreal and terrestrial oribatid mite diversity across spatial scales. Oecologia 160:817–825. doi:10.1007/s00442-009-1348-3

    Article  PubMed  Google Scholar 

  • Löbel S, Snäll T, Rydin H (2006) Species richness patterns and metapopulation processes—evidence from epiphyte communities in boreo-nemoral forests. Ecography 29:169–182. doi:10.1111/j.2006.0906-7590.04348.x

    Article  Google Scholar 

  • Louette G, De Meester L (2005) High dispersal capacity of cladoceran zooplankton in newly founded communities. Ecology 86:353–359. doi:10.1890/04-0403

    Article  Google Scholar 

  • Louette G, Vanoverbeke J, Ortells R, De Meester L (2007) The founding mothers: the genetic structure of newly established Daphnia populations. Oikos 116:728–741. doi:10.1111/j.0030-1299.2007.15664.x

    Article  CAS  Google Scholar 

  • Louette G, De Meester L, Declerck SAJ (2008) Assembly of zooplankton communities in newly created ponds. Freshw Biol 53:2309–2320. doi:10.1111/j.1365-2427.2008.02052.x

    Google Scholar 

  • Luecke C, Litt AH (1987) Effects of predation by Chaoborus flavicans on crustacean zooplankton of Lake Lenore, Washington. Freshw Biol 18:185–192. doi:10.1111/j.1365-2427.1987.tb01306.x

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Maguire B (1963) The passive dispersal of small aquatic organisms and their colonization of isolated bodies of water. Ecol Monogr 33:161–185. doi:10.2307/1948560

    Article  Google Scholar 

  • March F, Bass D (1995) Application of island biogeography theory to temporary pools. J Freshw Ecol 10:83–85. doi:10.1080/02705060.1995.9663420

    Article  Google Scholar 

  • Meisch C (2000) Freshwater Ostracoda of Western and Central Europe. Spektrum, Heidelberg

    Google Scholar 

  • Michels E, Cottenie K, Neys L, Meester L (2001) Zooplankton on the move: first results on the quantification of dispersal in a set of interconnected ponds. Hydrobiologia 442:117–126. doi:10.1023/A:1017549416362

    Article  Google Scholar 

  • Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol Evol 7:278–285. doi:10.1016/S0169-5347(00)01874-7

    Article  Google Scholar 

  • Ng ISY, Carr CM, Cottenie K (2009) Hierarchical zooplankton metacommunities: distinguishing between high and limiting dispersal mechanisms. Hydrobiologia 619:133–143. doi:10.1007/s10750-008-9605-8

    Article  Google Scholar 

  • Oksanen J et al (2011) Vegan: community ecology package. R package, version 1.17-11. http://CRAN.R-project.org/package=vegan

  • Omesová M (2006) Perloočky a klanonožci Cladocera et Copepoda, Crustacea CHKO Kokořínsko Cladocerans and copepods Crustacea of Kokořínsko Protected Landscape Area. Bohemia centralis 27:167–177 (in Czech)

    Google Scholar 

  • Padial AA, Ceschin F, Declerck SAJ, De Meester L, Bonecker CC, Lansac-Tôha FA, Rodrigues L, Luzia CR, Train S, Velho LFM, Bini LM (2014) Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS ONE 9:e111227. doi:10.1371/journal.pone.0111227

    Article  PubMed  PubMed Central  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290. doi:10.1093/bioinformatics/btg412

    Article  CAS  PubMed  Google Scholar 

  • Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625. doi:10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Proctor VW (1964) Viability of crustacean eggs recovered from ducks. Ecology 45:656–658. doi:10.2307/1936124

    Article  Google Scholar 

  • Ripley B (2011) Tree: classification and regression trees. R package version 1.0-26

  • Schlichting HE Jr, Sides SL (1969) The passive transport of aquatic microorganisms by selected hemiptera. J Ecol 57:759–764. doi:10.2307/2258497

    Article  Google Scholar 

  • Schulz G, Siqueira T, Stefan G, de Oliveira Roque F (2012) Passive and active dispersers respond similarly to environmental and spatial processes: an example from metacommunity dynamics of tree hole invertebrates. Fundam Appl Limnol 181:315–326. doi:10.1127/1863-9135/2012/0365

    Article  Google Scholar 

  • Sciullo L, Kolasa J (2012) Linking local community structure to the dispersal of aquatic invertebrate species in a rock pool metacommunity. Community Ecol 13:203–212. doi:10.1556/ComEc.13.2012.2.10

    Article  Google Scholar 

  • Shiel RJ, Green JD, Nielsen DL (1998) Floodplain biodiversity: why are there so many species? Hydrobiologia 387:39–46. doi:10.1023/A:1017056802001

    Article  Google Scholar 

  • Shurin JB (2001) Interactive effects of predation and dispersal on zooplankton communities. Ecology 82:3404–3416. doi:10.1890/0012-9658(2001)082[3404:IEOPAD]2.0.CO;2

    Article  Google Scholar 

  • Shurin JB, Cottenie K, Hillebrand H (2009) Spatial autocorrelation and dispersal limitation in freshwater organisms. Oecologia 159:151–159. doi:10.1007/s00442-008-1174-z

    Article  PubMed  Google Scholar 

  • Smith TW, Lundholm JT (2010) Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography 33:648–655. doi:10.1111/j.1600-0587.2009.06105.x

    Article  Google Scholar 

  • Soininen J (2014) A quantitative analysis of species sorting across organisms and ecosystems. Ecology 95:3284–3292. doi:10.1890/13-2228.1

    Article  Google Scholar 

  • Soininen J, Kokocinski M, Estlander S, Kotanen J, Heino J (2007) Neutrality, niches, and determinants of plankton metacommunity structure across boreal wetland ponds. Ecoscience 14:146–154. doi:10.2980/1195-6860(2007)14[146:NNADOP]2.0.CO;2

    Article  Google Scholar 

  • Soons MB, Ozinga WA (2005) How important is long-distance seed dispersal for the regional survival of plantspecies? Divers Distrib 11:165–172. doi:10.1111/j.1366-9516.2005.00148.x

    Article  Google Scholar 

  • Šrámek-Hušek R (1953) Naši klanonožci [Our copepods] (in Czech), Naše vojsko edn. Nakladatelství československé, Praha

    Google Scholar 

  • Šťastný K, Bejček V, Hudec K (2006) Atlas hnízdního rozšíření ptáků v České republice: 2001–2003. Aventinum, Praha

    Google Scholar 

  • Van de Meutter F, Stoks R, De Meester L (2008) Size-selective dispersal of Daphnia resting eggs by backswimmers (Notonecta maculata). Biol Lett 4:494–496. doi:10.1098/rsbl.2008.0323

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanschoenwinkel B, Gielen S, Vandewaerde H, Seaman M, Brendonck L (2008a) Relative importance of different dispersal vectors for small aquatic invertebrates in a rock pool metacommunity. Ecography 31:567–577. doi:10.1111/j.0906-7590.2008.05442.x

    Article  Google Scholar 

  • Vanschoenwinkel B, Waterkeyn A, Vandecaetsbeek T, Pineau O, Grillas P, Brendonck L (2008b) Dispersal of freshwater invertebrates by large terrestrial mammals: a case study with wild boar (Sus scrofa) in Mediterranean wetlands. Freshw Biol 53:2264–2273. doi:10.1111/j.1365-2427.2008.02071.x

    Google Scholar 

  • Verreydt D, De Meester L, Decaestecker E, Villena MJ, Van Der Gucht K, Vannormelingen P, Vyverman W, Declerck SAJ (2012) Dispersal-mediated trophic interactions can generate apparent patterns of dispersal limitation in aquatic metacommunities. Ecol Lett 15:218–226. doi:10.1111/j.1461-0248.2011.01728.x

    Article  PubMed  Google Scholar 

  • Viana DS et al (2014) Environment and biogeography drive aquatic plant and cladoceran species richness across Europe. Freshw Biol 59:2096–2106. doi:10.1111/fwb.12410

    Article  Google Scholar 

  • Waterkeyn A, Pineau O, Grillas P, Brendonck L (2010) Invertebrate dispersal by aquatic mammals: a case study with nutria Myocastor coypus (Rodentia, Mammalia) in Southern France. Hydrobiologia 654:267–271. doi:10.1007/s10750-010-0388-3

    Article  Google Scholar 

  • Yan ND, Keller W, MacIsaac HJ, McEachern LJ (1991) Regulation of zooplankton community structure of an acidified lake by Chaoborus. Ecol Appl 1:52–65. doi:10.2307/1941847

    Article  Google Scholar 

  • Zhai M, Nováček O, Výravský V, Syrovátka V, Bojková J, Helešic J (2015) Environmental and spatial control of ostracod assemblages in the Western Carpathian spring fens. Hydrobiologia 745:225–239. doi:10.1007/s10750-014-2104-1

    Article  Google Scholar 

Download references

Acknowledgments

M. Šorf, J. Hotový and B. Nová helped in the field, J. Fott, V. Sacherová, M. Bláha, and M. Šorf during species determination, Z. Juračková, M. Lulay and J. Vojta with assessing the spatial distribution and maps. Statistical analyses could not have been done without the important advice of P. Keil and V. Jarošík. Predator taxa—true bugs, dragonflies and aquatic beetles—were identified by the following specialists: P. Kment, T. Soldán, J. Dobiáš, D. Boukal, J. Klecka and T. Ditrich. We thank R. Symonová for her useful advice on ostracod identification. Two anonymous reviewers and J. Shurin provided useful comments to previous versions of the manuscript. The study was funded by the EuroCORES/EuroDIVERSITY project BIOPOOL (supported through the Czech Science Foundation Project No. DIV/06/E007), the Charles University in Prague (SVV 260198).

Author contribution statement

LB and AP originally formulated the idea. PJJ and LB conducted the fieldwork. DV and MČ conducted the field experiment. PJJ and DV analyzed the samples. PJJ, SAJD and AP proceeded the statistical analyses. PJJ, AP and SAJD wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr J. Juračka.

Additional information

Communicated by Jonathan Shurin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 678 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juračka, P.J., Declerck, S.A.J., Vondrák, D. et al. A naturally heterogeneous landscape can effectively slow down the dispersal of aquatic microcrustaceans. Oecologia 180, 785–796 (2016). https://doi.org/10.1007/s00442-015-3501-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3501-5

Keywords

Navigation