Skip to main content
Log in

Contrasting environments shape thermal physiology across the spatial range of the sandhopper Talorchestia capensis

  • Population ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Integrating thermal physiology and species range extent can contribute to a better understanding of the likely effects of climate change on natural populations. Generally, broadly distributed species show variation in thermal physiology between populations. Within their distributional ranges, populations at the edges are assumed to experience more challenging environments than central populations (fundamental niche breadth hypothesis). We have investigated differences in thermal tolerance and thermal sensitivity under increasing/decreasing temperatures among geographically separated populations of the sandhopper Talorchestia capensis along the South African coasts. We tested whether the thermal tolerance and thermal sensitivity of T. capensis differ between central and marginal populations using a non-parametric constraint space analysis. We linked thermal sensitivity to environmental history by using historical climatic data to evaluate whether individual responses to temperature could be related to natural long-term fluctuations in air temperatures. Our results demonstrate that there were significant differences in the thermal response of T. capensis populations to both increasing/decreasing temperatures. Thermal sensitivity (for increasing temperatures only) was negatively related to temperature variability and positively related to temperature predictability. Two different models fitted the geographical distribution of thermal sensitivity and thermal tolerance. Our results confirm that widespread species show differences in physiology among populations by providing evidence of contrasting thermal responses in individuals subject to different environmental conditions at the limits of the species’ spatial range. When considering the complex interactions between individual physiology and species ranges, it is not sufficient to consider mean environmental temperatures, or even temperature variability; the predictability of that variability may be critical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth

    Google Scholar 

  • Angilletta MJ Jr (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, Oxford

    Book  Google Scholar 

  • Angilletta MJ, Huey RB, Frazier MR (2010) Thermodynamic effects on organismal performance: is hotter better? Physiol Biochem Zool 83:197–206. doi:10.1086/648567

    Article  PubMed  Google Scholar 

  • Baldanzi S, McQuaid CD, Cannicci S, Porri F (2013) Environmental domains and range-limiting mechanisms: testing the Abundant Centre Hypothesis using Southern African sandhoppers. PLoS One 8(1):e54598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bozinovic F, Calosi P, Spicer JI (2011) Physiological correlates of geographic range in animals. Annu Rev Ecol Evol Systt 42:155–179

    Article  Google Scholar 

  • Brown JH (1984) On the relationship between abundance and distribution of species. Am Nat 124:255–279

    Article  Google Scholar 

  • Brown JH (1995) Macroecology. University of Chicago Press, Chicago

    Google Scholar 

  • Calosi P, Morritt D, Chelazzi G, Ugolini A (2007) Physiological capacity and environmental tolerance in two sandhopper species with contrasting geographical ranges: Talitrus saltator and Talorchestia ugolinii. Mar Biol 151:1647–1655

    Article  Google Scholar 

  • Calosi P, Bilton DT, Spicer JI (2008) Thermal tolerance, acclimatory capacity and vulnerability to global climate change. Biol Lett 4:99–102

    Article  PubMed Central  PubMed  Google Scholar 

  • Chown SL, Gaston KJ (2008) Macrophysiology for a changing world. Proc R Soc B 275:1469–1478

    Article  PubMed Central  PubMed  Google Scholar 

  • Clarke A (2004) Is there a universal temperature dependence of metabolism? Funct Ecol 18:252–256

    Article  Google Scholar 

  • Colwell RK (1974) Predictability, constancy and contingency of periodic phenomena. Ecology 55:1148–1153

    Article  Google Scholar 

  • DeWitt TJ, Scheiner SM (2004) Phenotypic plasticity: functional and conceptual approaches. Oxford University Press, Oxford

    Google Scholar 

  • Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD (2012) Climate change impacts on marine ecosystems. Annu Rev Mar Sci 4:11–37

    Article  Google Scholar 

  • Enquist BJ, Jordan MA, Brown JH (1995) Connections between ecology, biogeography, and paleobiology: relationship between local abundance and geographic distribution in fossil and recent molluscs. Evol Ecol 9:586–604

    Article  Google Scholar 

  • Fenberg PB, Rivadeneira MM (2011) Range limits and geographic patterns of abundance of the rocky intertidal owl limpet, Lottia gigantea. J Biogeog 38:2286–2298

    Article  Google Scholar 

  • Fischer K, Karl I (2010) Exploring plastic and genetic responses to temperature variation using copper butterflies. Clim Res 43:17–30

    Article  Google Scholar 

  • Folguera G, Bastıas DA, Bozinovic F (2009) Impact of experimental thermal amplitude on ectotherm performance: adaptation to climate change variability? Comp Biochem Physiol A 154:389–393

    Article  Google Scholar 

  • Fusi M, Giomi F, Babbini S, Daffonchio D, McQuaid CD, Porri F, Cannicci S (2015) Thermal specialization across large geographical scales predicts the resilience of mangrove crab populations to global warming. Oikos 124:784–795

    Article  Google Scholar 

  • Gaitán-Espitia JD, Belén Arias M, Lardies MA, Nespolo RF (2013) Variation in thermal sensitivity and thermal tolerances in an invasive species across a climatic gradient: lessons from the land snail Cornu aspersum. PLoS ONE 8(8):e70662

    Article  PubMed Central  PubMed  Google Scholar 

  • Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford University Press, Oxford

    Google Scholar 

  • Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21:394–407

    Article  Google Scholar 

  • Gianoli E, Valladares F (2012) Studying phenotypic plasticity: the advantages of a broad approach. Biol J Lin Soc 105:1–7

    Article  Google Scholar 

  • Gilchrist GW (1996) A quantitative genetic analysis of thermal sensitivity in the locomotor performance curve of Aphidius ervi. Evolution 50:1560–1572

    Article  Google Scholar 

  • Gilman SE (2006) The northern geographic range limit of the intertidal limpet Collisella scabra: a test of performance, recruitment, and temperature hypotheses. Ecography 29:709–720

    Article  Google Scholar 

  • Griffiths CL (1976) Guide to the benthic marine amphipods of Southern Africa. Trustees of the South African Museum, Rustica Press, Cape Town

  • Hasanean HM (2004) Wintertime surface temperature in Egypt in relation to the associated atmospheric circulation. Int J Climatol 24:985–999

    Article  Google Scholar 

  • Helmuth B, Mieszkowska N, Moore P, Hawkins SJ (2006) Living on the edge of two changing worlds: forecasting the responses of rocky intertidal ecosystems to climate change. Annu Rev Ecol Evol Syst 37:373–404

    Article  Google Scholar 

  • Holt RD (2003) On the evolutionary ecology of species’ ranges. Evol Ecol Res 5:159–178

    Google Scholar 

  • Huey RB, Berrigan D, Gilchrist GW, Herron JC (1999) Testing the adaptive significance of acclimation: a strong inference approach. Am Zool 39:323–336

    Article  Google Scholar 

  • Hutchinson GE (1959) Homage to Santa Rosalia or why are there so many kinds of animals? Am Nat 93:145–159

    Article  Google Scholar 

  • Kassahn KS, Crozier RH, Pörtner HO, Caley MJ (2009) Animal performance and stress: responses and tolerance limits at different levels of biological organisation. Biol Rev 84:277–292

    Article  PubMed  Google Scholar 

  • Kearney M (2006) Habitat, environment and niche: what are we modelling? Oikos 115:186–191

    Article  Google Scholar 

  • Kelly MW, Sanford E, Grosberg RK (2012) Limited potential for adaptation to climate change in a broadly distributed marine crustacean. Proc R Soc B 279:349–356

    Article  PubMed Central  PubMed  Google Scholar 

  • Khaliq I, Hof C, Prinzinger R, Böhning-Gaese K, Pfenninger M (2014) Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc R Soc B 281:20141097

    Article  PubMed Central  PubMed  Google Scholar 

  • Lester SE, Gaines SD, Kinlan BP (2007) Reproduction on the edge: large-scale patterns of individual performance in a marine invertebrate. Ecology 88:2229–2239

    Article  PubMed  Google Scholar 

  • Lombard AT (2004) Marine component of the National Spatial Biodiversity Assessment for the development of South Africa’s National Biodiversity Strategic and Action Plan. National Botanical Institute, Pretoria

  • Mermillod-Blondin F, Lefour C, Lalouette L, Renault D, Malard F, Simon L, Douady CJ (2013) Thermal tolerance breadths among groundwater crustaceans living in a thermally constant environment. J Exp Biol 216:1683–1694

    Article  CAS  PubMed  Google Scholar 

  • Morritt D (1988) Osmoregulation in littoral terrestrial talitroidean amphipods (Crustacea) from Britain. J Exp Mar Biol Ecol 123:77–94

    Article  Google Scholar 

  • Morritt D (1998) Hygrokinetic responses of talitrid amphipods. J Crust Biol 18:25–35

    Article  Google Scholar 

  • Morritt D, Ingolfsson A (2000) Upper thermal tolerances of the beachflea Orchestia gammarellus (Pallas) (Crustacea: amphipoda: Talitridae) associated with hot springs in Iceland. J Exp Mar Biol Ecol 255:215–227

    Article  PubMed  Google Scholar 

  • Paaijmans KP, Heinig RL, Seliga RA, Blanford JI, Blanford S, Murdock CC, Thomas MB (2013) Temperature variation makes ectotherms more sensitive to climate change. Glob Change Biol 19(8):2373–2380

    Article  Google Scholar 

  • Parmesan C, Gaines S, Gonzalez S, Kaufman DM, Kingsolver J, Peterson AT, Sagarin R (2005) Empirical perspectives on species borders: from traditional biogeography to global change. Oikos 108:58–75

    Article  Google Scholar 

  • Pavesi L, Tiedemann R, DeMatthaeis E, Ketmaier V (2013) Genetic connectivity between land and sea: the case of the beachflea Orchestia montagui (Crustacea, Amphipoda, Talitridae) in the Mediterranean Sea. Front Zool 10:1–21

    Article  Google Scholar 

  • Pigliucci M (2001) Phenotypic plasticity: beyond nature and nurture. Johns Hopkins University Press, Baltimore

  • Pigliucci M (2005) Evolution of phenotypic plasticity: where are we going now? Trends Ecol Evol 20:481–486

    Article  PubMed  Google Scholar 

  • Pither J (2003) Climate tolerance and interspecific variation in geographic range size. Proc R Soc Lond B 270:475–481

    Article  Google Scholar 

  • Podrabsky JE, Somero GN (2004) Changes in gene expression associated with acclimation to constant temperatures and fluctuating daily temperatures in an annual killifish, Austrofundulus limnaeus. J Exp Biol 207:2237–2254

    Article  CAS  PubMed  Google Scholar 

  • Pörtner H-O, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97

    Article  PubMed  Google Scholar 

  • R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ribeiro PL, Camacho A, Navas CA (2012) Considerations for assessing maximum critical temperatures in small ectothermic animals: insights from Leaf-Cutting Ants. PLoS ONE 7(2):e32083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rivadeneira MM, Hernáez P, Baeza JA, Boltaña S, Cifuentes M, Correa C, Cuevas A, del Valle E, Hinojosa I, Ulrich N, Valdivia N, Vásquez N, Zander A, Thiel M (2010) Testing the abundant-centre hypothesis using intertidal porcelain crabs along the Chilean coast: linking abundance and life-history variation. J Biogeog 37:486–498

    Article  Google Scholar 

  • Ruel JJ, Ayres MP (1999) Jensen’s inequality predicts effects of environmental variation. Trends Ecol Evol 14:361–366

    Article  PubMed  Google Scholar 

  • Sagarin RD, Gaines SD (2002) The ‘abundant centre’ distribution: to what extent is the biogeographical rule? Ecol Lett 5:137–147

    Article  Google Scholar 

  • Sagarin RD, Gaines SD, Gaylord B (2006) Moving beyond assumptions to understand abundance distributions across the ranges of species. Trends Ecol Evol 21:524–530

    Article  PubMed  Google Scholar 

  • Samis KE, Eckert CRG (2007) Testing the abundant center model using range-wide demographic surveys of two coastal dune plants. Ecology 88:1747–1758

    Article  PubMed  Google Scholar 

  • Sanford E, Kelly MW (2011) Local Adaptation in Marine Invertebrates. Annu Rev Mar Sci 3:509–535

    Article  Google Scholar 

  • Schuler MS, Cooper BS, Storm JJ, Sears MW, Angilletta MJ Jr (2011) Isopods failed to acclimate their thermal sensitivity of locomotor performance during predictable or stochastic cooling. PLoS One 6(6):e20905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schulte PM, Timothy MH, Fangue NA (2011) Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integ Comp Biol 51:691–702

    Article  Google Scholar 

  • Schurmann H, Steffensen JF (1997) Effects of temperature, hypoxia and activity on the metabolism of juvenile Atlantic cod. J Fish Biol 50:1166–1180

    Google Scholar 

  • Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J Exp Biol 213:912–920

    Article  CAS  PubMed  Google Scholar 

  • Spicer JI, Gaston KJ (1999) Physiological diversity and its ecological implications. Blackwell Science, Oxford

    Google Scholar 

  • Stevens GC (1989) The latitudinal gradients in geographical range: how so many species co-exist in the tropics. Am Nat 133:240–256

    Article  Google Scholar 

  • Stillman JH, Somero GN (2000) A comparative analysis of the upper thermal tolerance limits of Eastern Pacific porcelain crabs, Genus Petrolisthes: influences of latitude, vertical zonation, acclimation, and phylogeny. Physiol Biochem Zool 73:200–208

    Article  CAS  PubMed  Google Scholar 

  • Sunday JM, Bates AE, Dulvy NK (2011) Global analysis of thermal tolerance and latitude in ectotherms. Proc R Soc Lond B 278(1713):1823–1830. doi:10.1098/rspb.2010.1295

    Article  Google Scholar 

  • Terblanche JS, Deere JA, Clusella-Trullas S, Janion C, Chown SL (2007) Critical thermal limits depend on methodological context. Proc R Soc Lond B 274:2935–2942

    Article  Google Scholar 

  • Terblanche JS, Hoffmann AA, Mitchell KA, Rako L, le Roux PC, Chown SL (2011) Ecologically relevant measures of tolerance to potentially lethal temperatures. J Exp Biol 214:3713–3725

    Article  PubMed  Google Scholar 

  • Tsubokura T, Goshima S, Nakao S (1997) Seasonal horizontal and vertical distribution patterns of the supralittoral amphipod Trinorchestia trinitatis in relation to environmental variables. J Crustacean Biol 17:674–680

    Article  Google Scholar 

  • Tuya F, Wernberg T, Thomsen MS (2008) Testing the ‘abundant centre’ hypothesis on endemic reef fishes in south-western Australia. Mar Ecol Prog Ser 372:225–230

    Article  Google Scholar 

  • Van Senus P (1988) Reproduction of the sandhoppers Talorchestia capensis (Dana) (Amphipoda, Talitridae). Crustaceana 55:93–103

    Article  Google Scholar 

  • Virgós E, Kowalczyk R, Trua A, de Marinis A, Mangas JG, Barea-Azcón JM, Geffen E (2011) Body size clines in the European badger and the abundant centre hypothesis. J Biogeog 38:1546–1556

    Article  Google Scholar 

  • Willhite C, Cupp PV (1982) Daily rhythms of thermal tolerance in Rana clamitans (anura, ranidae) tadpoles. Comp Biochem Physiol 72:255–257

    Article  Google Scholar 

  • Williams JA (1995) Burrow-zone distribution of the supra-littoral amphipod Talitrus saltator on Derby haven Beach, Isle of Man—a possible mechanism for regulating desiccation stress? J Crustacean Biol 15:466–475

    Article  Google Scholar 

  • Williams CM, Marshall KE, MacMillan HA, Dzurisin JDK, Hellmann JJ, Sinclair BJ (2012) Thermal variability increases the impact of autumnal warming and drives metabolic depression in an overwintering butterfly. PLoS One 7:e34470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank two anonymous reviewers for their valuable comments on earlier drafts of this manuscript. We are grateful to Dr. M. Tagliarolo for her contribution to the experiments and Dr. Irene Ortolani for her help composing the first draft of the paper. The authors also thank the South African Weather Service (http://www.weathersa.co.za ) for the release of historical climatic dataset. This paper was written under the framework of the project ‘‘CREC’’ [EU IRSES#247514]. The work is based upon research supported by the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation of South Africa (NRF).

Author contribution statement

SB, FP and MF conceived the ideas. SB and MF designed and performed the experiments. SB, NFW, MF, SC analysed the data. SB, NFW, CDM and FP wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Baldanzi.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests or any other form of conflict of interest

Additional information

Communicated by Sylvain Pincebourde.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldanzi, S., Weidberg, N.F., Fusi, M. et al. Contrasting environments shape thermal physiology across the spatial range of the sandhopper Talorchestia capensis . Oecologia 179, 1067–1078 (2015). https://doi.org/10.1007/s00442-015-3404-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3404-5

Keywords

Navigation