Skip to main content
Log in

Convergence of a specialized root trait in plants from nutrient-impoverished soils: phosphorus-acquisition strategy in a nonmycorrhizal cactus

  • Physiological ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

In old, phosphorus (P)-impoverished habitats, root specializations such as cluster roots efficiently mobilize and acquire P by releasing large amounts of carboxylates in the rhizosphere. These specialized roots are rarely mycorrhizal. We investigated whether Discocactus placentiformis (Cactaceae), a common species in nutrient-poor campos rupestres over white sands, operates in the same way as other root specializations. Discocactus placentiformis showed no mycorrhizal colonization, but exhibited a sand-binding root specialization with rhizosheath formation. We first provide circumstantial evidence for carboxylate exudation in field material, based on its very high shoot manganese (Mn) concentrations, and then firm evidence, based on exudate analysis. We identified predominantly oxalic acid, but also malic, citric, lactic, succinic, fumaric, and malonic acids. When grown in nutrient solution with P concentrations ranging from 0 to 100 μM, we observed an increase in total carboxylate exudation with decreasing P supply, showing that P deficiency stimulated carboxylate release. Additionally, we tested P solubilization by citric, malic and oxalic acids, and found that they solubilized P from the strongly P-sorbing soil in its native habitat, when the acids were added in combination and in relatively low concentrations. We conclude that the sand-binding root specialization in this nonmycorrhizal cactus functions similar to that of cluster roots, which efficiently enhance P acquisition in other habitats with very low P availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afif E, Barrón V, Torrent J (1995) Organic matter delays but does not prevent phosphate sorption by cerrado soils from Brazil. Soil Sci 159:207–211

    Article  CAS  Google Scholar 

  • Alves RJV, Kolbek J (1994) Plant species endemism in savanna vegetation on table mountains (Campo Rupestre) in Brazil. Vegetation 113:125–139. doi:10.1007/BF00044230

    Google Scholar 

  • Barrow NJ (2000) Towards a single-point method for measuring phosphate sorption by soils. Aust J Soil Res 38:1099–1113. doi:10.1071/SR99135

    Article  CAS  Google Scholar 

  • Bates TR, Lynch JP (2001) Root hairs confer a competitive advantage under low phosphorus availability. Plant Soil 236:243–250. doi:10.1023/A:1012791706800

    Article  CAS  Google Scholar 

  • Bates D, Maechler M, Bolker B (2012) lme4: linear mixed-effects models using S4 classes. R Package version 0.99875-6

  • Bolan NS, Naidu R, Mahimairaja S, Baskaran S (1994) Influence of low-molecular-weight organic acids on the solubilization of phosphates. Biol Fertil Soils 18:311–319. doi:10.1007/BF00570634

    Article  CAS  Google Scholar 

  • Brazilian woodland savannah and seasonally dry forest species. Persp Plant Ecol Evol Syst 16(2): 64–74. doi:10.1016/j.ppees.2014.02.001

  • Cândido HG (2012) Estratégias de aquisição de nutrientes e estequiometria ecológica em comunidades de campos rupestres. Brasil. Master’s Dissertation, Universidade Estadual de Campinas, Campinas, Brazil

  • Chen SL, Yang LT, Lin ZH, Tang N (2013) Roles of organic acid metabolism in plant tolerance to phosphorus-deficiency. In: Lüttge U, Beyschlag W, Rancis D, Cushman J (eds) Progress in Botany 74. Springer, New York, pp 213–237

    Chapter  Google Scholar 

  • Colwell JD (1963) The estimation of the phosphorus fertilizer requirements of wheat in southern New South Wales by soil analysis. Aust J Exp Agric Anim Husbandry 3:190–197. doi:10.1071/EA9630190

    Article  CAS  Google Scholar 

  • Benites MV, Caiafa AN, de Mendonça ES, Schaefer CE, Ker JC (2003) Solos e vegetação nos complexos rupestres de altitude da Mantiqueira e do Espinhaço. Flor Amb 10:76–85

    Google Scholar 

  • De Campos MCR (2012) Phosphorus-acquisition and phosphorus-conservation mechanisms of plants native to south-western Australia or to Brazilian rupestrian fields. PhD thesis, University of Western Australia, Perth

  • Dinkelaker B, Hengeler C, Marschner H (1995) Distribution and function of proteoid roots and other root clusters. Bot Acta 108:183–200

    Article  Google Scholar 

  • Dong D, Peng X, Yan X (2004) Organic acid exudation induced by phosphorus deficiency and/or aluminium toxicity in two contrasting soybean genotypes. Physiol Plant 122:190–199. doi:10.1111/j.1399-3054.2004.00373.x

    Article  CAS  Google Scholar 

  • Fox TR, Comerford NB (1992) Influence of oxalate loading on phosphorus and aluminum solubility in spodosols. Soil Sci Soc Am J 56:290–294. doi:10.2136/sssaj1992.03615995005600010046x

    Article  CAS  Google Scholar 

  • Gardner WK, Boundy KA (1983) The acquisition of phosphorus by Lupinus albus L. IV. The effect of interplanting wheat and white lupin on the growth and mineral composition of the two species. Plant Soil 70:391–402. doi:10.1007/BF02374894

    Article  CAS  Google Scholar 

  • Gardner WK, Barber DA, Parbery DG (1983) The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced. Plant Soil 70:107–124. doi:10.1007/BF02374754

    Article  CAS  Google Scholar 

  • Giovanetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500. doi:10.1111/j.1469-8137.1980.tb04556.x

    Article  Google Scholar 

  • Graetz DA, Nair VD (2009) Phosphorus sorption isotherm determination. In: Kovar JL, Pierzynski GM (eds) Methods of phosphorus analysis for soils, sediments, residuals, and waters. Virginia Tech University, Virginia, pp 33–37

    Google Scholar 

  • Grierson PF, Attiwill PM (1989) Chemical characteristics of the proteoid root mat of Banksia integrifolia L. Aust J Bot 37:137–143. doi:10.1071/BT9890137

    Article  CAS  Google Scholar 

  • Hayes P, Turner BL, Lambers H, Laliberté E (2014) Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence. J Ecol 102:396–410

    Article  CAS  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195. doi:10.1023/A:1013351617532

    Article  CAS  Google Scholar 

  • Hoffland E, van den Boogaard R, Nelemans J, Findenegg G (1992) Biosynthesis and root exudation of citric and malic acids in phosphate-starved rape plants. New Phytol 122:675–680. doi:10.1111/j.1469-8137.1992.tb00096.x

    Article  CAS  Google Scholar 

  • Hoffland E, Wei C, Wissuwa M (2006) Organic anion exudation by lowland rice (Oryza sativa L.) at zinc and phosphorus deficiency. Plant Soil 283:155–162. doi:10.1007/s11104-005-3937-1

    Article  CAS  Google Scholar 

  • Hopper SD (2009) OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes. Plant Soil 322:49–86. doi:10.1007/s11104-009-0068-0

    Article  CAS  Google Scholar 

  • Jauregui MA, Reisenauer HM (1982) Dissolution of oxides of manganese and iron by root exudate components. Soil Sci Soc Am J 46:314–317. doi:10.2136/sssaj1982.03615995004600020020x

    Article  CAS  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill, New York

    Google Scholar 

  • Johnson SE, Loeppert RH (2006) Role of organic acids in phosphate mobilization from iron oxide. Soil Sci Soc Am J 70:222–234. doi:10.2136/sssaj2005.0012

    Article  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere – a critical review. Plant Soil 205:25–44. doi:10.1023/A:1004356007312

    Article  CAS  Google Scholar 

  • Keerthisinghe G, Hocking PJ, Ryan PR, Delhaize E (1998) Effect of phosphorus supply on the formation and function of proteoid roots of white lupin (Lupinus albus L.). Plant Cell Environ 21:467–478. doi:10.1046/j.1365-3040.1998.00300.x

    Article  CAS  Google Scholar 

  • Kendall MG (1970) Rank correlation methods, 4th edn. Griffin, London

    Google Scholar 

  • Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486–488. doi:10.1016/S0953-7562(89)80195-9

    Article  Google Scholar 

  • Laliberté E, Turner BL, Costes T, Pearse SJ, Wyrwoll K, Zemunik G, Lambers H (2012) Experimental assessment of nutrient limitation along a 2-million-year dune chronosequence in the south-western Australia biodiversity hotspot. J Ecol 100:631–642. doi:10.1111/j.1365-2745.2012.01962.x

    Article  Google Scholar 

  • Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713. doi:10.1093/aob/mcl114

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambers H, Chapin FS, Pons TL (2008a) Plant physiological ecology (2nd edn). Springer, New York

  • Lambers H, Raven JA, Shaver GR, Smith SE (2008b) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103. doi:10.1016/j.tree.2007.10.008

    Article  PubMed  Google Scholar 

  • Lambers H, Brundrett MC, Raven JA, Hopper SD (2010) Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 334:11–31. doi:10.1007/s11104-010-0444-9

    Article  CAS  Google Scholar 

  • Lamont B (1974) The biology of dauciform roots in the sedge Cyathochaete avenacea. New Phytol 73:985–996. doi:10.1111/j.1469-8137.1974.tb01327.x

    Article  Google Scholar 

  • Lamont B (1982) Mechanisms for enhancing nutrient uptake in plants, with particular reference to mediterranean South Africa and Western Australia. Bot Rev 48:597–689. doi:10.1007/BF02860714

    Article  CAS  Google Scholar 

  • Lenth RV (2014) lsmeans: least-Squares Means. R Package version 2:05

    Google Scholar 

  • Lynch JP, Brown KM (2001) Topsoil foraging—an architectural adaptation of plants to low phosphorus availability. Plant Soil 225:225–237. doi:10.1023/A:1013324727040

    Article  Google Scholar 

  • Ma JF, Hiradate S, Matsumoto H (1998) High aluminum resistance in buckwheat. II Oxalic acid detoxifies aluminum internally. Plant Physiol 117:753–759. doi:10.1104/pp.117.3.753

    Article  CAS  PubMed Central  Google Scholar 

  • Machado M, Braun P, Taylor NP, Zappi D (2013) Discocactus placentiformis. IUCN 2013 IUCN Red List Threatened Species Version 2013.2

  • Martin LA, James G (2009) Unusual habitats, unusual plants. Cactus Succul J 81:106–112. doi:10.2985/015.081.0303

    Article  Google Scholar 

  • McCully ME (1999) Roots in soil: unearthing the complexities of roots and their rhizospheres. Annu Rev Plant Physiol Plant Mol Biol 50:695–718. doi:10.1146/annurev.arplant.50.1.695

    Article  PubMed  CAS  Google Scholar 

  • Miller RM (2005) The nonmycorrhizal root: a strategy for survival in nutrient-impoverished soils. New Phytol 165:655–658. doi:10.1111/j.1469-8137.2005.01331.x

    Article  PubMed  Google Scholar 

  • Motomizu S, Wakimoto T, Tôei K (1983) Spectrophotometric determination of phosphate in river waters with molybdate and malachite green. Analyst 108:361–367. doi:10.1039/AN9830800361

    Article  CAS  Google Scholar 

  • Muler AL, Oliveira RS, Lambers H, Veneklaas EJ (2014) Does cluster-root activity benefit nutrient uptake and growth of co-existing species? Oecologia 174:23–31. doi:10.1007/s00442-013-2747-z

    Article  PubMed  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi:10.1038/35002501

    Article  PubMed  CAS  Google Scholar 

  • Nagarajah S, Posner AM, Quirk JP (1970) Competitive adsorption of phosphate with polygalacturonate and other organic anions on kaolinite and oxide surfaces. Nature 228:83–85. doi:10.1038/228083a0

    Article  PubMed  CAS  Google Scholar 

  • Nambiar EKS (1976) Uptake of Zn65 from dry soil by plants. Plant Soil 44:267–271. doi:10.1007/BF00016978

    Article  CAS  Google Scholar 

  • Neumann G, Martinoia E (2002) Cluster roots: an underground adaptation for survival in extreme environments. Trends Plant Sci 7:162–167. doi:10.1016/S1360-1385(02)02241-0

    Article  PubMed  CAS  Google Scholar 

  • Neumann G, Massonneau A, Langlade N, Dinkelaker B, Hengeler C, Römheld V, Martinoia E (2000) Physiological aspects of cluster root function and development in phosphorus-deficient white lupin (Lupinus albus L.). Ann Bot 85:909–919. doi:10.1006/anbo.2000.1135

    Article  CAS  Google Scholar 

  • Nieuwenhuis R, te Grotenhuis M, Pelzer B (2012) Influence.ME: tools for detecting influential data in mixed effects models. R J 4:38–47

    Google Scholar 

  • Nishi AH, Vasconcellos-Neto J, Romero GQ (2013) The role of multiple partners in a digestive mutualism with a protocarnivorous plant. Ann Bot 111:143–150. doi:10.1093/aob/mcs242

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • North GB, Nobel PS (1992) Drought-induced changes in hydraulic conductivity and structure in roots of Ferocactus acanthodes and Opuntia ficus-indica. New Phytol 120:9–19. doi:10.1111/j.1469-8137.1992.tb01053.x

    Article  Google Scholar 

  • Oburger E, Kirk GJD, Wenzel WW, Puschenreiter M, Jones DL (2009) Interactive effects of organic acids in the rhizosphere. Soil Biol Biochem 41:449–457. doi:10.1016/j.soilbio.2008.10.034

    Article  CAS  Google Scholar 

  • Olde Venterink H (2011) Does phosphorus limitation promote species-rich plant communities? Plant Soil 345:1–9. doi:10.1007/s11104-011-0796-9

    Article  CAS  Google Scholar 

  • Olsen S, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular, issue 939, 1–19

  • Palomo L, Claassen N, Jones DL (2006) Differential mobilization of P in the maize rhizosphere by citric acid and potassium citrate. Soil Biol Biochem 38:683–692. doi:10.1016/j.soilbio.2005.06.019

    Article  CAS  Google Scholar 

  • Pearse SJ, Veneklaas EJ, Cawthray GR, Bolland MDA, Lambers H (2006) Carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status. Plant Soil 288:127–139. doi:10.1007/s11104-006-9099-y

    Article  CAS  Google Scholar 

  • Pereira CG, Almenara DP, Winter CE, Fritsch PW, Lambers H, Oliveira RS (2012) Underground leaves of Philcoxia trap and digest nematodes. Proc Natl Acad Sci USA 109:1154–1158. doi:10.1073/pnas.1114199109

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Peterson RL, Farquhar ML (1996) Root hairs: specialized tubular cells extending root surfaces. Bot Rev 62:1–40. doi:10.1007/BF02868919

    Article  Google Scholar 

  • Playsted CWS, Johnston ME, Ramage CM, Edwards DG, Cawthray GR, Lambers H (2006) Functional significance of dauciform roots: exudation of carboxylates and acid phosphatase under phosphorus deficiency in Caustis blakei (Cyperaceae). New Phytol 170:491–500. doi:10.1111/j.1469-8137.2006.01697.x

    Article  PubMed  CAS  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing

  • Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693. doi:10.1146/annurev.arplant.50.1.665

    Article  PubMed  CAS  Google Scholar 

  • Roelofs RFR, Rengel Z, Cawthray GR, Dixon KW, Lambers H (2001) Exudation of carboxylates in Australian Proteaceae: chemical composition. Plant Cell Environ 24:891–903. doi:10.1046/j.1365-3040.2001.00741.x

    Article  CAS  Google Scholar 

  • Shane MW, de Vos M, de Roock S, Cawthray GR, Lambers H (2003a) Effects of external phosphorus supply on internal phosphorus concentration and the initiation, growth and exudation of cluster roots in Hakea prostrata R. Br. Plant Soil 248:209–219. doi:10.1023/A:1022320416038

    Article  CAS  Google Scholar 

  • Shane MW, de Vos M, de Roock S, Lambers H (2003b) Shoot P status regulates cluster-root growth and citrate exudation in Lupinus albus grown with a divided root system. Plant Cell Environ 26:265–273. doi:10.1046/j.1365-3040.2003.00957.x

    Article  CAS  Google Scholar 

  • Shane MW, Dixon KW, Lambers H (2005) The occurrence of dauciform roots amongst western Australian reeds, rushes and sedges, and the impact of phosphorus supply on dauciform-root development in Schoenus unispiculatus (Cyperaceae). New Phytol 165:887–898. doi:10.1111/j.1469-8137.2005.01283.x

    Article  PubMed  CAS  Google Scholar 

  • Shane MW, Cawthray GR, Cramer MD, Kuo J, Lambers H (2006) Specialized “dauciform” roots of Cyperaceae are structurally distinct, but functionally analogous with “cluster” roots. Plant Cell Environ 29:1989–1999. doi:10.1111/j.1365-3040.2006.01574.x

    Article  PubMed  CAS  Google Scholar 

  • Shane MW, McCully ME, Canny MJ, Pate JS, Lambers H (2011) Development and persistence of sandsheaths of Lyginia barbata (Restionaceae): relation to root structural development and longevity. Ann Bot 108:1307–1322. doi:10.1093/aob/mcr244

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharpley AN, Kleinman PJA, Weld JL (2008) Environmental soil phosphorus indices. In: Carter MR, Gregorich EG (eds) Soil sampling and methods of analysis. Taylor & Francis, Boca Raton, pp 141–159

    Google Scholar 

  • Shishkova S, Rost TL, Dubrovsky JG (2008) Determinate root growth and meristem maintenance in angiosperms. Ann Bot 101:319–340. doi:10.1093/aob/mcm251

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Skene KR (1998) Cluster roots: some ecological considerations. J Ecol 86:1060–1064. doi:10.1046/j.1365-2745.1998.00326.x

    Article  Google Scholar 

  • Smith RJ, Hopper SD, Shane MW (2011) Sand-binding roots in Haemodoraceae: global survey and morphology in a phylogenetic context. Plant Soil 348:453–470. doi:10.1007/s11104-011-0874-z

    Article  CAS  Google Scholar 

  • StatSoft I (2007) STATISTICA (data analysis software system)

  • Turner BL, Condron LM (2013) Pedogenesis, nutrient dynamics, and ecosystem development: the legacy of T.W. Walker and J.K. Syers. Plant Soil 367:1–10. doi:10.1007/s11104-013-1750-9

    Article  CAS  Google Scholar 

  • Ullah MH, Jabbar A, Khan MA (1983) The influence of soil pH and texture on the adsorption of phosphorus by soils. Pakistan J Agric Res 4:41–46

    Google Scholar 

  • Viani RAG, Rodrigues RR, Dawson TE, Oliveira RS (2011) Savanna soil fertility limits growth but not survival of tropical forest tree seedlings. Plant Soil 349(12):341–353. doi:10.1007/s11104-011-0879-7

    Article  CAS  Google Scholar 

  • Viani RAG, Rodrigues RR, Dawson TE, Lambers H, Oliveira RS (2014). Soil pH accounts for differences in species distribution and leaf nutrient concentrations of Brazilian woodland savannah and Seasonally Dry forest species. Perspect Plant Ecol Evol Syst 16:64–74

  • Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19. doi:10.1016/0016-7061(76)90066-5

    Article  CAS  Google Scholar 

  • Watt M, Evans JR (1999) Linking development and determinacy with organic acid efflux from proteoid roots of white lupin grown with low phosphorus and ambient or elevated atmospheric CO2 concentration. Plant Physiol 120:705–716. doi:10.1104/pp.120.3.705

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Witkowski ETF, Mitchell DT (1987) Variations in soil phosphorus in the fynbos biome, South Africa. J Ecol 75:1159–1171

    Article  Google Scholar 

  • Zheng SJ, Ma JF, Matsumoto H (1998) High aluminum resistance in buckwheat. I. Al-induced specific secretion of oxalic acid from root tips. Plant Physiol 117:745–751. doi:10.1104/pp.117.3.745

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant CNPq 474670/2008-2), Fundação de Apoio à Pesquisa do Estado de São Paulo (FAPESP, grant 10/17204-0) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes). We thank H.G. Cândido, C. Pereira and A.V. Scatigna for the support in collecting the plants in the field. Additionally, we thank M.C. Campos, S.M. Carmello-Guerreiro, N. Urquiza, J. Tamashiro, J.C. Galvão, L. Pereira, D.C. da Silva and D.P. de Souza for the methodological support and F.S.C. Takahashi for the help with statistical analyses. We also thank P.B. Costa, S.M.S. Costa, L. Franci and A. Dias, for their assistance. Finally, we thank the anonymous reviewers for their useful reviews of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Oliveira.

Additional information

Communicated by Jason P. Kaye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrahão, A., Lambers, H., Sawaya, A.C.H.F. et al. Convergence of a specialized root trait in plants from nutrient-impoverished soils: phosphorus-acquisition strategy in a nonmycorrhizal cactus. Oecologia 176, 345–355 (2014). https://doi.org/10.1007/s00442-014-3033-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-3033-4

Keywords

Navigation