Skip to main content

Advertisement

Log in

Fine-scale spatial age segregation in the limited foraging area of an inshore seabird species, the little penguin

  • Behavioral ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Competition for food resources can result in spatial and dietary segregation among individuals from the same species. Few studies have looked at such segregations with the combined effect of sex and age in species with short foraging ranges. In this study we examined the 3D spatial use of the environment in a species with a limited foraging area. We equipped 26 little penguins (Eudyptula minor) of known age, sex, and breeding output with GPS (location) and accelerometer (body acceleration and dive depth) loggers. We obtained dietary niche information from the isotopic analysis of blood tissue. We controlled for confounding factors of foraging trip length and food availability by sampling adults at guard stage when parents usually make one-day trips. We observed a spatial segregation between old (>11 years old) and middle-aged penguins (between 5 and 11 years old) in the foraging area. Old penguins foraged closer to the shore, in shallower water. Despite observing age-specific spatial segregation, we found no differences in the diving effort and foraging efficiency between age classes and sexes. Birds appeared to target similar prey types, but showed age-specific variation in their isotopic niche width. We hypothesize that this age-specific segregation was primarily determined by a “cohort effect” that would lead individuals sharing a common life history (i.e. having fledged and dispersed around the same age) to forage preferentially together or to share similar foraging limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alanärä A, Burns MD, Metcalfe NB (2001) Intraspecific resource partitioning in brown trout: the temporal distribution of foraging is determined by social rank. J Anim Ecol 70:980–986. doi:10.1046/j.0021-8790.2001.00550.x

    Article  Google Scholar 

  • Andersson M (1994) Sexual selection. Princeton University Press, Princeton

    Google Scholar 

  • Angelier F, Shaffer SA, Weimerskirch H, Chastel O (2006) Effect of age, breeding experience and senescence on corticosterone and prolactin levels in a long-lived seabird: the wandering albatross. Gen Comp Endocrinol 149:1–9

    Article  PubMed  CAS  Google Scholar 

  • Ardia DR, Bildstein KL (1997) Sex-related differences in habitat selection in wintering American kestrels, Falco sparverius. Anim Behav 53:1305–1311. doi:10.1006/anbe.1996.0364

    Article  PubMed  Google Scholar 

  • Arnould JPY, Dann P, Cullen JM (2004) Determining the sex of little penguins (Eudyptula minor) in northern Bass Strait using morphometric measurements. Emu 104:261–265. doi:10.1071/MU04035

    Article  Google Scholar 

  • Bearhop S, Phillips RA, McGill R, Cherel Y, Dawson DA, Croxall JP (2006) Stable isotopes indicate sex-specific and long-term individual foraging specialisation in diving seabirds. Mar Ecol Prog Ser 311:157–164. doi:10.3354/meps311157

    Article  Google Scholar 

  • Bocher P, Cherel Y, Hobson KA (2000) Complete trophic segregation between South Georgian and common diving petrels during breeding at Iles Kerguelen. Mar Ecol Prog Ser 208:249–264. doi:10.3354/meps208249

    Article  Google Scholar 

  • Bolnick DI et al (2003) The ecology of individuals: incidence and implications of individual specialization. Am. Nat. 161:1–28. doi:10.1086/343878

    Article  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference, 2nd edn edn. Springer, New York

    Google Scholar 

  • Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519. doi:10.1016/j.ecolmodel.2006.03.017

    Article  Google Scholar 

  • Cannell BL, Cullen JM (1998) The foraging behaviour of little penguins Eudyptula minor at different light levels. Ibis 140:467–471. doi:10.1111/j.1474-919X.1998.tb04608.x

    Article  Google Scholar 

  • Catry P, Phillips RA, Phalan B, Croxall JP (2006) Senescence effects in an extremely long-lived bird: the grey-headed albatross Thalassarche chrysostoma. Proc R Soc Lond B 273:1625–1630

    Article  Google Scholar 

  • Catry P, Granadeiro JP, Ramos J, Phillips RA, Oliveira P (2011) Either taking it easy or feeling too tired: old Cory’s Shearwaters display reduced activity levels while at sea. J Ornithol 152:549–555. doi:10.1007/s10336-010-0616-7

    Article  Google Scholar 

  • Cherel Y, Hobson KA (2007) Geographical variation in carbon stable isotope signatures of marine predators: a tool to investigate their foraging areas in the Southern Ocean. Mar Ecol Prog Ser 329:281–287. doi:10.3354/meps329281

    Article  CAS  Google Scholar 

  • Cherel Y, Fontaine C, Richard P, Labat J-P (2010) Isotopic niches and trophic levels of myctophid fishes and their predators in the Southern Ocean. Limnol Oceanogr 55:324–332

    Article  CAS  Google Scholar 

  • Chiaradia A, Kerry K (1999) Daily nest attendance and breeding performance in the little penguin Eudyptula minor at Phillip Island, Australia. Marine Ornithology 27:13–20

    Google Scholar 

  • Chiaradia A, Nisbet ICT (2006) Plasticity in parental provisioning and chick growth in little penguins Eudyptula minor in years of high and low breeding success. Ardea 94:257–270

    Google Scholar 

  • Chiaradia A, Costalunga A, Kerry K (2003) The diet of little penguins (Eudyptula minor) at Phillip Island, Victoria, in the absence of a major prey; Pilchard (Sardinops sagax). Emu 103:43–48

    Article  Google Scholar 

  • Chiaradia A, McBride J, Murray T, Dann P (2007) Effect of fog on the arrival time of little penguins Eudyptula minor: a clue for visual orientation? J Ornithol 148:229–233. doi:10.1007/s10336-007-0125-5

    Article  Google Scholar 

  • Chiaradia A, Forero MG, Hobson KA, Cullen JM (2010) Changes in diet and trophic position of a top predator 10 years after a mass mortality of a key prey. ICES J Mar Sci 67:1710–1720. doi:10.1093/icesjms/fsq067

    Article  Google Scholar 

  • Chiaradia A, Forero MG, Hobson KA, Swearer SE, Hume F, Renwick L, Dann P (2012) Diet segregation between two colonies of little penguins Eudyptula minor in southeast Australia. Austral Ecol 37:610–619

    Article  Google Scholar 

  • Clutton-Brock TH (1988) Reproductive success. University Chicago Press, Chicago

    Google Scholar 

  • Collins M, Cullen JM, Dann P (1999) Seasonal and annual foraging movements of little penguins from Phillip Island. Victoria. Wildl. Res. 26:705–721. doi:10.1071/wr98003

    Article  Google Scholar 

  • Copeland KE (2008) Concerted small-group foraging behavior in gentoo penguins Pygoscelis papua. Mar. Ornithol. 36:193–194

    Google Scholar 

  • Daniel TA, Chiaradia A, Logan M, Quinn GP, Reina RD (2007) Synchronized group association in little penguins, Eudyptula minor. Anim Behav 74:1241–1248. doi:10.1016/j.anbehav.2007.01.029

    Article  Google Scholar 

  • Dann P, Carron M, Chambers B, Chambers L, Dornom T, McLaughlin A, Sharp B, Talmage ME, Thoday R, Unthank S (2005) Longevity in little penguins Eudyptula minor. Mar. Ornit. 33:71–72

    Google Scholar 

  • Daunt F, Wanless S, Harris MP, Money L, Monaghan P (2007) Older and wiser: improvements in breeding success are linked to better performance in European shags. Funct Ecol 21:561–567

    Article  Google Scholar 

  • Elliott KH (2013) How can wild birds live long and work hard? Patterns in physiology and behaviour of aging birds. PhD dissertation, Department of Biological Sciences, University of Manitoba, Canada

  • Faul F, Erdfelder E, Buchner A, Lang AG (2009) Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav. Res. Methods 41:1149–1160

    Article  PubMed  Google Scholar 

  • Fieberg J, Kochanny CO (2005) Quantifying home-range overlap: the importance of the utilization distribution. J. Wildl. Manage. 69:1346–1359. doi:10.2193/0022-541x(2005)69[1346:qhotio]2.0.co;2

    Article  Google Scholar 

  • Furness RW, Birkhead TR (1984) Seabird colony distributions suggest competition for food supplies during the breeding season. Nature 311:655–656. doi:10.1038/311655a0

    Article  Google Scholar 

  • Gleiss AC, Wilson RP, Shepard ELC (2011) Making overall dynamic body acceleration work: on the theory of acceleration as a proxy for energy expenditure. Methods Ecol Evol 2:23–33. doi:10.1111/j.2041-210X.2010.00057.x

    Article  Google Scholar 

  • Hausmann MF, Winkler DW, Huntington CE, Vleck D, Sanneman CE, Hanley D, Vleck CM (2005) Cell-mediated immunosenescence in birds. Oecologia 145:270–275

    Article  Google Scholar 

  • Hobson KA, Clark RG (1993) Turnover of 13C in cellular and plasma fractions of blood: implications for non-destructive sampling in avian dietary studies. Auk 110:638–641

    Article  Google Scholar 

  • Hoenig JM, Heisey DM (2001) The abuse of power. Am Stat 55(1):19–24. doi:10.1198/000313001300339897

    Article  Google Scholar 

  • Hyrenbach KD, Fernandez P, Anderson DJ (2002) Oceanographic habitats of two sympatric North Pacific albatrosses during the breeding season. Mar Ecol Prog Ser 233:283–301. doi:10.3354/meps233283

    Article  Google Scholar 

  • Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J Anim Ecol 80:595–602. doi:10.1111/j.1365-2656.2011.01806.x

    Article  PubMed  Google Scholar 

  • Kappes MA, Weimerskirch H, Pinaud D, Le Corre M (2011) Variability of resource partitioning in sympatric tropical boobies. Mar Ecol Prog Ser 441:281–294. doi:10.3354/meps09376

    Article  Google Scholar 

  • Kato A, Ropert-Coudert Y, Gremillet D, Cannell B (2006) Locomotion and foraging strategy in foot-propelled and wing-propelled shallow-diving seabirds. Mar Ecol Prog Ser 308:293–301. doi:10.3354/meps308293

    Article  Google Scholar 

  • Keddy PA (1989) Competition. Chapman & Hall, London

    Book  Google Scholar 

  • Kronfeld-Schor N, Dayan T (2003) Partitioning of time as an ecological resource. Annu Rev Ecol Evol Syst 34:153–181. doi:10.1146/annurev.ecolsys.34.011802.132435

    Article  Google Scholar 

  • Lecomte VJ et al (2010) Patterns of aging in the long-lived wandering albatross. Proc. Natl. Acad. Sci. U. S. A. 107:6370–6375. doi:10.1073/pnas.0911181107

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McCleery RH, Perrins CM, Sheldon BC, Charmentier A (2008) Age-specific reproduction in a long-lived species: the combined effects of senescence and individual quality. Proc R Soc Lond B Biol Sci 275:963–970

    Article  CAS  Google Scholar 

  • Nisbet ICT, Dann P (2009) Reproductive performance of little penguins Eudyptula minor in relation to year, age, pair-bond duration, breeding date and individual quality. J Avian Biol 40:296–308

    Article  Google Scholar 

  • Page B, McKenzie J, Sumner MD, Coyne M, Goldsworthy SD (2006) Spatial separation of foraging habitats among New Zealand fur seals. Mar Ecol Prog Ser 323:263–279. doi:10.3354/meps323263

    Article  Google Scholar 

  • Phillips RA, Silk JRD, Phalan B, Catry P, Croxall JP (2004) Seasonal sexual segregation in two Thalassarche albatross species: competitive exclusion, reproductive role specialization or foraging niche divergence? Proc. R. Soc. B-Biol. Sci. 271:1283–1291. doi:10.1098/rspb.2004.2718

    Article  CAS  Google Scholar 

  • Pianka ER (1981) Competition and niche theory. In: May RM (ed) Theoretical ecology: principles and applications. Blackwell Scientific Publications, Oxford, pp 167–196

    Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, the R Development Core Team (2013) nlme: Linear and nonlinear mixed effects models. R package version 3.1-109

  • Ponganis PJ, Starke LN, Horning M, Kooyman GL (1999) Development of diving capacity in emperor penguins. J Exp Biol 202:781–786

    PubMed  CAS  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Analysis. Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org

  • Ropert-Coudert Y, Kato A, Wilson R, Cannell B (2006) Foraging strategies and prey encounter rate of free-ranging little penguins. Mar Biol 149:139–148. doi:10.1007/s00227-005-0188-x

    Article  Google Scholar 

  • Ropert-Coudert Y, Knott N, Chiaradia A, Kato A (2007) How do different data logger sizes and attachment positions affect the diving behaviour of little penguins? Deep-Sea Res II 54:415–423

    Article  Google Scholar 

  • Sakamoto KQ et al (2009) Can ethograms be automatically generated using body acceleration data from free-ranging birds? PLoS ONE 4:e5379. doi:10.1371/journal.pone.0005379

    Article  PubMed  PubMed Central  Google Scholar 

  • Schelling TC (1971) Dynamic models of segregation. J. Math. Sociol. 1:143–186

    Article  Google Scholar 

  • Schoener TW (1986) Resource partitioning. In: Kikkawa J, Anderson DJ (eds) Community ecology pattern and process. Blackwell Scientific Publication, Carlton, pp 91–126

    Google Scholar 

  • Shealer DA (2001) Foraging behavior and food of seabirds. In: Schreiber EA, Burger J (eds) Biology of Marine Birds. CRC Press, Boca Raton, pp 137–177

    Chapter  Google Scholar 

  • Sol D, Santos DM, Cuadrado M (2000) Age-related feeding site selection in urban pigeons (Columba livia): experimental evidence of the competition hypothesis. Can J Zool Rev Can Zool. 78:144–149. doi:10.1139/cjz-78-1-144

    Article  Google Scholar 

  • Stauss C et al (2012) Sex-specific foraging behaviour in northern gannets Morus bassanus: incidence and implications. Mar Ecol Prog Ser 457:151–162. doi:10.3354/meps09734

    Article  Google Scholar 

  • Sutherland DR, Dann P (2012) Improving the accuracy of population size estimates for burrow-nesting seabirds. Ibis 154(3):488–498

    Article  Google Scholar 

  • Symonds ME, Moussalli A (2011) A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav Ecol Sociobiol 65:13–21. doi:10.1007/s00265-010-1037-6

    Article  Google Scholar 

  • Takahashi A, Sato K, Naito Y, Dunn MJ, Trathan PN, Croxall JP (2004) Penguin–mounted cameras glimpse underwater group behaviour. Proc R Soc Lond B 271:S281–S282. doi:10.1098/rsbl.2004.0182

    Article  Google Scholar 

  • Vanderhoff EN, Eason PK (2007) Disparity between adult and juvenile American Robins Turdus migratorius foraging for ground invertebrates and cherry fruits. Ethology 113:1212–1218. doi:10.1111/j.1439-0310.2007.01434.x

    Article  Google Scholar 

  • Vleck CM, Haussmann ME, Vleck D (2007) Avian senescence: underlying mechanisms. J Ornithol 148:S611–S624

    Article  Google Scholar 

  • Weimerskirch H, Cherel Y, Cuenot-Chaillet F, Ridoux V (1997) Alternative foraging strategies and resource allocation by male and female Wandering Albatrosses. Ecology 78:2051–2063. doi:10.1890/0012-9658(1997)078[2051:AFSARA]2.0.CO;2

    Article  Google Scholar 

  • Whiteway TG (2009) Australian bathymetry and topography grid. geoscience Australia Record 2009/21

  • Wilson RP et al (1997) Long-term attachment of transmitting and recording devices to penguins and other seabirds. Wildl Soc Bull 25:101–106

    Google Scholar 

  • Worton BJ (1989) Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70:164–168. doi:10.2307/1938423

    Article  Google Scholar 

  • Wunderle J (1991) Age-specific foraging proficiency in birds. Current Ornithology 8:273–324

    Google Scholar 

  • Zimmer I, Ropert-Coudert Y, Kato A, Ancel A, Chiaradia A (2011a) Does foraging performance change with age in female little penguins (Eudyptula minor)? PLoS ONE 6:e16098. doi:10.1371/journal.pone.0016098

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zimmer I, Ropert-Coudert Y, Poulin N, Kato A, Chiaradia A (2011b) Evaluating the relative importance of intrinsic and extrinsic factors on the foraging activity of top predators: a case study on female little penguins. Mar Biol 158:715–722. doi:10.1007/s00227-010-1594-2

    Article  Google Scholar 

Download references

Acknowledgments

We thank the continuing support from the Phillip Island Nature Parks and its staff, in particular the nice people from the Research Department: P. Dann, L. Renwick, P. Wasiak, R. Kirkwood, and especially M. Salton for his help in the field. Part of this study was supported financially by the ANR-2010-BLAN-1728-01 (PICASO). We thank J.P. Robin for lyophilizing blood samples, A. Zahariev and I. Chery for stable isotope measurements. We thank the MIBE team (especially F. Crenner, N. Chatelain, and M. Brucker) from the IPHC-DEPE for the GPS customisation. N. Kowalczyk made valuable comments and proofread a revised version. L. Pelletier was supported by a grant from CNRS and Région Alsace. The Australian Academy of Science has been a great support to this collaborative work. Finally, we thank three anonymous referees and the handling editor, Professor Scott R. McWilliams, for their useful comments that greatly improved our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laure Pelletier.

Additional information

Communicated by Scott McWilliams.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 164 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelletier, L., Chiaradia, A., Kato, A. et al. Fine-scale spatial age segregation in the limited foraging area of an inshore seabird species, the little penguin. Oecologia 176, 399–408 (2014). https://doi.org/10.1007/s00442-014-3018-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-3018-3

Keywords

Navigation