Skip to main content

Advertisement

Log in

Effects of phylogeny, leaf traits, and the altitudinal distribution of host plants on herbivore assemblages on congeneric Acer species

  • Plant-microbe-animal interactions - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Historical, niche-based, and stochastic processes have been proposed as the mechanisms that drive community assembly. In plant–herbivore systems, these processes can correspond to phylogeny, leaf traits, and the distribution of host plants, respectively. Although patterns of herbivore assemblages among plant species have been repeatedly examined, the effects of these factors among co-occurring congeneric host plant species have rarely been studied. Our aim was to reveal the process of community assembly for herbivores by investigating the effects of phylogeny, leaf traits, and the altitudinal distribution of closely related host plants of the genus Acer. We sampled leaf functional traits for 30 Acer species in Japan. Using a newly constructed phylogeny, we determined that three of the six measured leaf traits (leaf thickness, C/N ratio, and condensed tannin content) showed a phylogenetic signal. In a field study, we sampled herbivore communities on 14 Acer species within an elevation gradient and examined relationships between herbivore assemblages and host plants. We found that herbivore assemblages were significantly correlated with phylogeny, leaf traits, phylogenetic signals, and the altitudinal distribution of host plants. Our results indicate that the interaction between historical and current ecological processes shapes herbivore community assemblages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ackerly DD (2003) Community assembly, niche conservatism, and adaptive evolution in changing environments. Int J Plant Sci 164:165–184

    Article  Google Scholar 

  • Ackerly DD (2009) Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signal. Proc Natl Acad Sci USA 17:19699–19706

    Article  Google Scholar 

  • Ackerly DD, Donoghue MJ (1998) Leaf size, sapling allometry, and Corner’s rules: phylogeny and correlated evolution in maples (Acer). Am Nat 152:767–791

    Article  CAS  PubMed  Google Scholar 

  • Adler PB, HilleRisLambers J, Levine JM (2007) A niche for neutrality. Ecol Lett 10:95–104

    Article  PubMed  Google Scholar 

  • Agrawal AA (2011) Current trends in the evolutionary ecology of plant defence. Funct Ecol 25:420–432

    Article  Google Scholar 

  • Agrawal AA, Fishbein M (2006) Plant defense syndromes. Ecology 87:S132–S149

    Article  PubMed  Google Scholar 

  • Agrawal AA, Fishbein M, Halitschke R, Hastings AP, Rabosky DL, Rasmann S (2009) Evidence for adaptive radiation from a phylogenetic study of plant defenses. Proc Natl Acad Sci USA 106:18067–18072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Appel HM (1993) Phenolics in ecological interactions: the importance of oxidation. J Chem Ecol 19:1521–1552

    Article  CAS  PubMed  Google Scholar 

  • Asmussen E, Peutzfeldt A, Heitmann T (1999) Stiffness, elastic limit, and strength of newer types of endodontic posts. J Dent 27:275–278

    Article  CAS  PubMed  Google Scholar 

  • Barber NA, Marquis RJ (2011) Leaf quality, predators, and stochastic processes in the assembly of a diverse herbivore community. Ecology 92:699–708

    Article  PubMed  Google Scholar 

  • Becerra JX (1997) Insects on plants: macroevolutionary chemical trends in host use. Science 276:253–256

    Article  CAS  PubMed  Google Scholar 

  • Becerra JX (2007) The impact of herbivore–plant coevolution on plant community structure. Proc Natl Acad Sci USA 104:7483–7488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beck J, Khen CV (2007) Beta-diversity of geometrid moths from northern Borneo: effects of habitat, time and space. J Anim Ecol 76:230–237

    Article  PubMed  Google Scholar 

  • Bergvall UA, Leimar O (2005) Plant secondary compounds and the frequency of food types affect food choice by mammalian herbivores. Ecology 86:2450–2460

  • Broadhurst RB, Jones WT (1978) Analysis of condensed tannins using acidified vanillin. J Sci Food Agric 29:788–794

    Article  CAS  Google Scholar 

  • Cavender-Bares J, Hozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715

    Article  PubMed  Google Scholar 

  • Chase JM (2003) Experimental evidence for alternative stable equilibria in a benthic pond food web. Ecol Lett 6:733–741

    Article  Google Scholar 

  • Chase JM (2007) Drought mediates the importance of stochastic community assembly. Proc Natl Acad Sci USA 104:17430–17434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Chase JM, Biro EG, Ryberg WA, Smith KG (2009) Predators temper the relative importance of stochastic processes in the assembly of prey metacommunities. Ecol Lett 12:1210–1218

    Article  PubMed  Google Scholar 

  • Cornell HV, Washburn JO (1979) Evolution of the richness-area correlation for cynipid gall wasps on oak trees: a comparison of two geographic areas. Evolution 33:257–274

    Article  Google Scholar 

  • Craine JM (2009) Resource strategies of wild plants. Princeton University Press, New Jersey

    Google Scholar 

  • Darrow K, Bowers MD (1997) Phenological and population variation in iridoid glycosides of Plantago lanceolata (Plantaginaceae). Biochem Syst Ecol 25:1–11

    Article  CAS  Google Scholar 

  • Diamond JM (1975) Assembly of species communities. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Harvard University Press, Cambridge, pp 342–444

    Google Scholar 

  • Emerson BC, Gillespie RG (2008) Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol Evol 23:619–630

    Article  PubMed  Google Scholar 

  • Fay MF, Cameron KM, Prance GT, Lledó MD, Chase MW (1997) Familial relationships of Rhabdodendron (Rhabdodendraceae): plastid rbcL sequences indicate a caryophyllid placement. Kew Bull 52:923–932

    Article  Google Scholar 

  • Fine PVA, Miller ZJ, Mesones I, Irazuzta S, Appel HM, Stevens MHM, Sääksjärvi I, Schultz JC, Coley PD (2006) The growth-defense trade-off and habitat specialization by plants in Amazonian forests. Ecology 87:150–162

    Article  Google Scholar 

  • Graham CH, Fine PVA (2008) Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecol Lett 11:1265–1277

    Article  PubMed  Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, New York

    Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBayes, Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Jackson BG, Peltzer DA, Wardle DA (2013) Are functional traits and litter decomposability coordinated across leaves, twigs and wood? A test using temperate rainforest tree species. Oikos 122:1131–1142

    Article  Google Scholar 

  • Jombart T, Balloux F, Dray S (2010) Adephylo: new tools for investigating the phylogenetic signal in biological traits. Bioinformatics 26:1907–1909

    Article  CAS  PubMed  Google Scholar 

  • Jordan WC, Courtney MW, Neigel JE (1996) Low levels of intraspecific genetic variation at a rapidly evolving chloroplast DNA locus in North American duckweeds (Lemnaceae). Am J Bot 83:430–439

    Article  CAS  Google Scholar 

  • Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298

    Article  CAS  PubMed  Google Scholar 

  • Kocyan A, Zhang L-B, Schaefer H, Renner SS (2007) A multi-locus chloroplast phylogeny for the Cucurbitaceae and its implications for character evolution and classification. Mol Phylogenet Evol 44:553–577

    Article  CAS  PubMed  Google Scholar 

  • Kumata T, Kobayashi S, Hirowatari T (2013) Gracillaria (in Japanese). In: Nasu Y, Hirowatari T, Kisida Y (eds) The standard of moths in Japan. IV. Gakken Education, Tokyo, pp 91–155

    Google Scholar 

  • Kurokawa H, Peltzer DA, Wardle DA (2010) Plant traits, leaf palatability and litter decomposability for co-occurring woody species differing in invasion status and nitrogen fixation ability. Funct Ecol 24:513–523

    Article  Google Scholar 

  • Kursar TA, Coley PD (2003) Convergence in defense syndromes of young leaves in tropical rainforests. Biochem Syst Ecol 31:929–949

    Article  CAS  Google Scholar 

  • Kursar TA, Dexterc KG, Lokvama J, Penningtond RT, Richardsond JE, Webera MG, Murakamia ET, Draked C, McGregord R, Coley PD (2009) The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga. Proc Natl Acad Sci USA 106:18073–18078

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lavoie B, Oberhauser KS (2004) Compensatory feeding in Danaus plexippus (Lepidoptera:Nymphalidae) in response to variation in host plant quality. Environ Entom 33:1062–1069

  • Lei TT, Lechowicz MJ (1990) Shade adaptation and shade tolerance in saplings of three Acer species from eastern North America. Oecologia 84:224–228

    Google Scholar 

  • Lei TT, Lechowicz MJ (1997) The photosynthetic response of eight species of Acer to simulated light regimes from the centre and edges of gaps. Funct Ecol 11:16–23

    Article  Google Scholar 

  • Losos JB (1996) Ecological and evolutionary determinant of the species-area relation in Caribbean anoline lizards. Philos Trans R Soc B 351:847–854

    Article  Google Scholar 

  • Mattson WJ Jr (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161

    Article  Google Scholar 

  • Milla R, Reich PB (2011) Multi-trait interactions, not phylogeny, fine-tune leaf size reduction with increasing altitude. Ann Bot 107:455–465

  • Murakami M, Hirao T, Ichie T (2007) Comparison of lepidopteran larval communities among tree species in a temperate deciduous forest, Japan. Ecol Entomol 32:613–620

    Article  Google Scholar 

  • Novotny V, Weiblen GD (2005) From communities to continents: beta diversity of herbivorous insects. Ann Zool Fenn 42:463–475

    Google Scholar 

  • Novotny V, Basset Y, Miller SE, Weiblen GD, Bremer B, Cizek L, Drozd P (2002) Low host specificity of herbivorous insects in a tropical forest. Nature 416:841–844

    Article  CAS  PubMed  Google Scholar 

  • Novotny V, Drozd P, Miller SE, Kulfan M, Janda M, Basset Y, Weiblen GD (2006) Why are there so many species of herbivorous insects in tropical rainforests? Science 313:1115–1118

    Article  CAS  PubMed  Google Scholar 

  • Novotny V, Miller SE, Baje L, Balagawi S, Basset Y, Cizek L, Craft KJ, Dem F, Drew RAI, Hulcr J, Leps J, Lewis O, Pokon R, Stewart AJA, Weiblen GD (2010) Guild-specific patterns of species richness and host specialization in plant-herbivore food webs from a tropical forest. J Anim Ecol 79:1193–1203

    Article  PubMed  Google Scholar 

  • Ødegaard F, Diserud OH, Ostbye K (2005) The importance of plant relatedness for host utilization among phytophagous insects. Ecol Lett 8:612–617

    Article  Google Scholar 

  • Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) Vegan: community ecology package. R package version 2.0-2. http://CRAN.R-project.org/package=vegan

  • Olmstead RG, Michaels HJ, Scott KM, Palmer JD (1992) Monophyly of the Asteridae and identification of their major lineages inferred from DNA sequences of rbcL. Ann Mo Bot Gard 79:249–265

    Article  Google Scholar 

  • Onoda Y, Westoby M, Adler PB, Choong AMF, Clissold FJ, Cornelis-sen JHC, Diaz S, Dominy NJ, Elgart A, Enrico L, Howard JJ, Jalili A, Kitajima K, Kurokawa H, McArthur C, Lucas PW, Markesteijn L, Prez-Harguindeguy N, Poorter L, Richards L, Santiago LS, Sosinski EE Jr, Van Bael SA, Warton DI, Wright IJ, Wright SJ, Yamashita N (2011) Global patterns of leaf mechanical properties. Ecol Lett 14:301–312

    Article  PubMed  Google Scholar 

  • Pavoine S, Ollier S, Pontier D, Chessel D (2008) Testing for phylogenetic signal in phenotypic traits: new matrices of phylogenetic proximities. Theor Popul Biol 73:79–91

    Article  PubMed  Google Scholar 

  • Pearse IS, Hipp AL (2009) Phylogenetic and trait similarity to a native species predict herbivory on non-native oaks. Proc Natl Acad Sci USA 106:18097–18102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pearse IS, Hipp AL (2012) Global patterns of leaf defenses in oak species. Evolution 66:2272–2286

    Article  PubMed  Google Scholar 

  • Preszler RW, Boecklen WJ (1996) The influence of elevation on tri-trophic interactions: opposing gradients of top-down and bottom-up effects on a leaf-mining moth. Ecoscience 3:75–80

    Google Scholar 

  • Price ML, Butler LG (1977) Rapid visual estimation and spectro-photometric determination of tannin content of sorghum grain. J Agric Food Chem 25:1268–1273

    Article  CAS  Google Scholar 

  • Rasmann S, Agrawal AA (2011) Evolution of specialization: a phylogenetic study of host range in the red milkweed beetle (Tetraopes tetraophthalmus). Am Nat 177:728–737

    Article  PubMed  Google Scholar 

  • Ricklefs RE (1987) Community diversity: relative roles of local and regional processes. Science 235:167

    Article  CAS  PubMed  Google Scholar 

  • Ricklefs RE (2004) A comprehensive framework for global patterns in biodiversity. Ecol Lett 7:1–15

    Article  Google Scholar 

  • Rominger AJ, Miller TEX, Collins SL (2009) Relative contributions of neutral and niche-based processes to the structure of a desert grassland grasshopper community. Oecologia 161:791–800

    Article  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. (www.r-project.org)

  • Samuels CL, Drake JA (1997) Divergent perspectives on community convergence. Trends Ecol Evol 12:427–432

    Article  CAS  PubMed  Google Scholar 

  • Sax DR, Gaines SD, Brown JH (2002) Species invasions exceed extinctions on islands worldwide: a comparative study of plants and birds. Am Nat 160:766–783

  • Silva DM, Batalha MA (2010) Defense syndromes against herbivory in a cerrado plant community. Plant Ecol 212:181–193

    Article  Google Scholar 

  • Sipe TW, Bazzaz FA (1994) Gap partitioning among maples (Acer) in central New England: shoot architecture and photosynthesis. Ecology 75:2318–2332

    Article  Google Scholar 

  • Sipe TW, Bazzaz FA (1995) Gap partitioning among maples (Acer) in central New England: survival and growth. Ecology 76:1587–1602

    Article  Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka H (1995) Seed demography of three co-occurring Acer species in a Japanese temperate deciduous forest. J Veg Sci 6:887–896

    Article  Google Scholar 

  • The University of Tokyo Chichibu Forest, Graduate School of Agricultural and Life Sciences, The University of Tokyo (2012) In: The 10th Education and Research Plan of The University of Tokyo Chichibu Forest (2011–2020) (in Japanese)

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton

    Google Scholar 

  • Tuomisto H, Ruokolainen K (2006) Analyzing or explaining beta-diversity? Understanding the targets of different methods of analysis. Ecology 87:2697–2708

    Article  PubMed  Google Scholar 

  • van Jaarsveld AS, Freitag S, Chown SL, Muller C, Koch S, Hull H, Bellamy C, Kruger M, Endrody-Younga S, Mansell MW, Scholtz CH (1998) Biodiversity assessment and conservation strategies. Science 279:2106–2108

    Article  PubMed  Google Scholar 

  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505

    Article  Google Scholar 

  • Webster B, Bruce T, Pickett J, Hardie J (2010) Volatiles functioning as host cues in a blend become nonhost cues when presented alone to the black bean aphid. Anim Behav 79:451–457

    Article  Google Scholar 

  • Weiblen GD, Webb CO, Novotny V, Basset Y, Miller SE (2006) Phylogenetic dispersion of host use in a tropical insect herbivore community. Ecology 87:S62–S75

    Article  PubMed  Google Scholar 

  • Yonekura K, Kajita T (2003) BG Plants YList: an online service of Japanese plant names, including a nomenclature index (in Japanese). <http://bean.bio.chiba-u.jp/bgplants/ylist_main.html> Accessed 20 Oct 2013

  • Zehnder CB, Stodola KW, Joyce BL, Egetter D, Cooper RJ, Hunter MD (2009) Elevational and seasonal variation in the foliar quality and arthropod community of Acer pensylvanicum. Environ Entomol 38:1161–1167

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank K. Watanabe, S. Saito, J. Saihanna, Y. Okamura and Y. Igarashi for their help in the field and laboratory and N. Kamata and technical staff of the University Forests in Chichibu, the University of Tokyo for their kind support. We also thank Nippon Shinyaku and the garden shop of Tsukasa Maples for providing specimens for the DNA extractions. This work was supported by a Grant-in-Aid for Scientific Research from the Japanese Society for the Promotion of Science to M. M. (no. 24310170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Murakami.

Additional information

Communicated by Jennifer Thaler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 787 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakadai, R., Murakami, M. & Hirao, T. Effects of phylogeny, leaf traits, and the altitudinal distribution of host plants on herbivore assemblages on congeneric Acer species. Oecologia 175, 1237–1245 (2014). https://doi.org/10.1007/s00442-014-2964-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-2964-0

Keywords

Navigation