Skip to main content
Log in

Linking vital rates to invasiveness of a perennial herb

  • Population ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Invaders generally show better individual performance than non-invaders and, therefore, vital rates (survival, growth, fecundity) could potentially be used to predict species invasiveness outside their native range. Comparative studies have usually correlated vital rates with the invasiveness status of species, while few studies have investigated them in relation to population growth rate. Here, I examined the influence of five vital rates (plant establishment, survival, growth, flowering probability, seed production) and their variability (across geographic regions, habitat types, population sizes and population densities) on population growth rate (λ) using data from 37 populations of an invasive, iteroparous herb (Lupinus polyphyllus) in a part of its invaded range in Finland. Variation in vital rates was often related to habitat type and population density. The performance of the populations varied from declining to rapidly increasing independently of habitat type, population size or population density, but differed between regions. The population growth rate increased linearly with plant establishment, and with the survival and growth of vegetative individuals, while the survival of flowering individuals and annual seed production were not related to λ. The vital rates responsible for rapid population growth varied among populations. These findings highlight the importance of both regional and local conditions to plant population dynamics, demonstrating that individual vital rates do not necessarily correlate with λ. Therefore, to understand the role of individual vital rates in a species ability to invade, it is necessary to quantify their effect on population growth rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Buckley YM, Downey P, Fowler SW, Hill R, Memmot J, Norambuena H, Pitcairn M, Byers DL, Platenkamp GAJ, Shaw RG, Sheppard AW, Winks C, Wittenberg R, Rees M (2003) Are invasives bigger? A global study of seed size variation in two invasive shrubs. Ecology 84: 1434–1440. doi:10.1890/0012-9658(2003)084[1434:AIBAGS]2.0.CO;2

    Google Scholar 

  • Buckley YM, Ramula S, Blomberg SP, Burns JH, Crone EE, Ehrlén J, Knight TM, Pichancourt J-B, Quested H, Wardle GM (2010) Causes and consequences of variation in plant population growth rates: a synthesis of matrix population models in a phylogenetic context. Ecol Lett 13:1182–1197. doi:10.1111/j.1461-0248.2010.01506.x

    Article  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (1998) Model selection and inference: a practical information-theoretic approach. Springer, New York

    Book  Google Scholar 

  • Burns JH (2008) Demographic performance predicts invasiveness of species in the Commelinaceae under high-nutrient conditions. Ecol Appl 18:335–346. doi:10.1890/07-0568.1

    Article  PubMed  Google Scholar 

  • Burns JH, Pardini EA, Schutzenhofer MR, Chung YA, Seidler KJ, Knight TM (2013) Greater sexual reproduction contributes to differences in demography of invasive plants and their noninvasive relatives. Ecology 94:995–1004. doi:10.1890/12-1310.1

    Article  PubMed  Google Scholar 

  • Cappuccino N (2004) Allee effect in an invasive, alien plant, pale swallow-wort Vincetoxicum rossicum (Asclepiadaceae). Oikos 106:3–8. doi:10.1111/j.0030-1299.2004.12863.x

    Article  Google Scholar 

  • Caswell H (2001) Matrix population models: construction, analysis, and interpretation. Sunderland, Massachusetts

    Google Scholar 

  • Che-Castaldo JP, Inouye DW (2011) The effects of dataset length and mast seeding on the demography of Frasera speciosa, a long-lived monocarpic plant. Ecosphere 2, Art. no. 126. doi:10.1890/ES11-00263.1

  • Crawley MJ (2007) The R Book. Wiley, Chichester

    Book  Google Scholar 

  • Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu Rev Ecol Syst 34:183–211. doi:10.1146/annurev.ecolsys.34.011802.132403

    Article  Google Scholar 

  • Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449. doi:10.1111/j.1365-294X.2007.03538.x

    Article  CAS  PubMed  Google Scholar 

  • Easterling MR, Ellner SP, Dixon PM (2000) Size-specific sensitivity: applying a new structured population model. Ecology 81:694–708. doi:10.1890/0012-9658(2000)081[0694:SSSAAN]2.0.CO;2

    Google Scholar 

  • Ehrlén J (2003) Fitness components versus total demographic effects: evaluating herbivore impacts on a perennial herb. Am Nat 162:796–810. doi:10.1086/379350

    Article  PubMed  Google Scholar 

  • Elam DR, Ridley CE, Goodell K, Ellstrand NC (2007) Population size and relatedness affect fitness of a self-incompatible invasive plant. Proc Natl Acad Sci USA 104:549–552. doi:10.1073/pnas.0607306104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elderd BD, Doak DF (2006) Comparing direct and community-mediated effects of disturbance on plant population dynamics: flooding, herbivory and Mimulus guttatus. J Ecol 94:240–246. doi:10.1111/j.1365-2745.2006.01115.x

    Article  Google Scholar 

  • Ellner SP, Rees M (2006) Integral projection models for species with complex demography. Am Nat 167:410–428. doi:10.1086/499438

    Article  PubMed  Google Scholar 

  • Flores-Moreno H, Moles AT (2013) A comparison of recruitment success of introduced and native species under natural conditions. Plos ONE 8:e72509. doi:10.1371/journal.pone.0072509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Franco M, Silvertown J (2004) A comparative demography of plants based upon elasticities of vital rates. Ecology 85:531–538

    Article  Google Scholar 

  • Jacquemyn H, Brys R, Jongejans E (2010) Seed limitation restricts population growth in shaded populations of a perennial woodland orchid. Ecology 91:119–129

    Article  PubMed  Google Scholar 

  • Jongejans E, de Kroon H (2005) Space versus time variation in the population dynamics of three co-occurring perennial herbs. J Ecol 93:681–692

    Article  Google Scholar 

  • Jongejans E, Jorritsma-Wienk LD, Becker U, Dostál P, Mildén M, de Kroon H (2010) Region versus site variation in the population dynamics of three short-lived perennials. J Ecol 98:279–289

    Article  Google Scholar 

  • Knight TM, Havens K, Vitt P (2011) Will the use of less fecund cultivars reduce the invasiveness of perennial plants? BioScience 61:816–822. doi:10.1525/bio.2011.61.10.11

    Article  Google Scholar 

  • Kolb A, Dahlgren JP, Ehrlén J (2010) Population size affects vital rates but not population growth rate of a perennial plant. Ecology 91:3210–3217. doi:10.1890/09-2207.1

    Article  PubMed  Google Scholar 

  • Lampinen R, Lahti T (2011) Kasviatlas 2010. University of Helsinki, Finnish Museum of Natural History, Botanical Museum, Helsinki. http://www.luomus.fi/kasviatlas

  • Lehtilä K, Syrjänen K, Leimu R, Begoña Garcia M, Ehrlén J (2006) Habitat change and demography of Primula veris: identification of management targets. Conserv Biol 20:833–843

    Article  PubMed  Google Scholar 

  • Mason RAB, Cooke J, Moles AT, Leishman MR (2008) Reproductive output of invasive versus native plants. Glob Ecol Biogeogr 17:633–640. doi:10.1111/j.1466-8238.2008.00402.x

    Article  Google Scholar 

  • Neter J, Kutner MH, Nachtsheim CJ, Wasserman W (1996) Applied linear statistical models: regression, analysis of variance, and experimental designs. Irwin, Chicago

    Google Scholar 

  • Oostermeijer JGB, Brugman ML, De Boer ER, Den Nijs HCM (1996) Temporal and spatial variation in the demography of Gentiana pneumonanthe, a rare perennial herb. J Ecol 84:156–166

    Article  Google Scholar 

  • Parker IM (2000) Invasion dynamics of Cytisus scoparius: a matrix model approach. Ecology 10:726–743

    Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New York

    Book  Google Scholar 

  • Pyšek P, Richardson DM (2007) Traits associated with invasiveness in alien plants: where do we stand? In: Nentwig W (ed) Biological invasions. Springer, Berlin, pp 97–125

    Google Scholar 

  • R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ramula S (2008) Responses to the timing of damage in an annual herb: fitness components versus population performance. Basic Appl Ecol 9:233–242. doi:10.1016/j.baae.2007.02.006

    Article  Google Scholar 

  • Ramula S, Pihlaja K (2012) Plant communities and the reproductive success of native plants after the invasion of an ornamental herb. Biol Invasion 14:2079–2090. doi:10.1007/s10530-012-0215-z

    Article  Google Scholar 

  • Ramula S, Knight TM, Burns JH, Buckley YM (2008) General guidelines for invasive plant management based on comparative demography of invasive and native plant populations. J Appl Ecol 45:1124–1133. doi:10.1111/j.1365-2664.2008.01502.x

    Article  Google Scholar 

  • Ramula S, Rees M, Buckley YM (2009) Integral projection models perform better for small demographic data sets than matrix population models—a case study of two perennial herbs. J Appl Ecol 46:1048–1105. doi:10.1111/j.1365-2664.2009.01706.x

    Article  Google Scholar 

  • Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661. doi:10.2307/2265768

    Article  Google Scholar 

  • Schumacher E, Kueffer C, Edwards PJ, Dietz H (2009) Influence of light and nutrient conditions on seedling growth of native and invasive trees on Seychelles. Biol Invasions 11:1941–1954. doi:10.1007/s10530-008-9371-6

    Article  Google Scholar 

  • Silvertown J, Franco M, Pisanty I, Mendoza A (1993) Comparative plant demography-relative importance of life-cycle components to the finite rate of increase in woody and herbaceous perennials. J Ecol 81:465–476

    Article  Google Scholar 

  • Silvertown J, Franco M, Menges E (1996) Interpretation of elasticity matrices as an aid to the management of plant populations for conservation. Conserv Biol 10:591–597

    Article  Google Scholar 

  • Sõber V, Ramula S (2013) Seed number and environmental conditions do not explain seed size variability for the invasive herb Lupinus polyphyllus. Plant Ecol 214:883–892. doi:10.1007/s11258-013-0216-8

    Article  Google Scholar 

  • Tobin PC, Berec L, Liebhold AM (2011) Exploiting Allee effects for managing biological invasions. Ecol Lett 14:615–624. doi:10.1111/j.1461-0248.2011.01614.x

    Article  PubMed  Google Scholar 

  • Valverde T, Silvertown J (1998) Variation in the demography of a woodland understorey herb (Primula vulgaris) along the forest regeneration cycle: projection matrix analysis. J Ecol 86:545–562

    Article  Google Scholar 

  • van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245. doi:10.1111/j.1461-0248.2009.01418.x

    Article  PubMed  Google Scholar 

  • Willis SG, Hulme PE (2004) Environmental severity and variation in the reproductive traits of Impatiens glandulifera. Funct Ecol 18:887–898. doi:10.1111/j.0269-8463.2004.00907.x

    Article  Google Scholar 

Download references

Acknowledgments

I thank K. Pihlaja and T. Häkkilä for assisting with data collection, T. Birge for grammatical help, and two anonymous reviewers and the editors for helpful suggestions. Financial support was provided by the Academy of Finland and the Emil Aaltonen Foundation. The experiments comply with the current laws of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satu Ramula.

Additional information

Communicated by Miguel Franco.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 245 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramula, S. Linking vital rates to invasiveness of a perennial herb. Oecologia 174, 1255–1264 (2014). https://doi.org/10.1007/s00442-013-2869-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-013-2869-3

Keywords

Navigation