, Volume 174, Issue 2, pp 319–326

Cloud immersion: an important water source for spruce and fir saplings in the southern Appalachian Mountains


    • Department of BiologyWake Forest University
  • Nicole M. Hughes
    • Department of BiologyHigh Point University
  • William K. Smith
    • Department of BiologyWake Forest University
Physiological ecology - Original research

DOI: 10.1007/s00442-013-2770-0

Cite this article as:
Berry, Z.C., Hughes, N.M. & Smith, W.K. Oecologia (2014) 174: 319. doi:10.1007/s00442-013-2770-0


Cloud immersion can provide a potentially important moisture subsidy to plants in areas of frequent fog including the threatened spruce-fir communities of the southern Appalachian Mountains (USA). These mountaintop communities grow only above ~1,500 m elevation, harbor the endemic Abies fraseri, and have been proposed to exist because of frequent cloud immersion. While several studies have demonstrated the importance of cloud immersion to plant water balance, no study has evaluated the proportion of plant water derived from cloud moisture in this ecosystem. Using the isotopic mixing model, IsoSource, we analyzed the isotopic composition of hydrogen and oxygen for water extracted from ground water, deep soil, shallow soil, fog, and plant xylem at the upper and lower elevational limits both in May (beginning of the growing season) and October (end of the growing season). Cloud-immersion water contributed up to 31 % of plant water at the upper elevation sites in May. High-elevation plants of both species also experienced greater cloud immersion and had greater cloud water absorption (14–31 %) compared to low-elevation plants (4–17 %). Greater cloud water uptake occurred in May compared to October, despite similar rainfall and cloud-immersion frequencies. These results demonstrate the important water subsidy that cloud-immersion water can provide. With a warming climate leading potentially to increases in the ceiling of the cloud base and, thus, less frequent cloud immersion, persistence of these relic mountaintop forests may depend on the magnitude of these changes and the compensating capabilities of other water sources.


FogStable isotopesIsoSourceAbies fraseriPicea rubens

Copyright information

© Springer-Verlag Berlin Heidelberg 2013