, Volume 159, Issue 2, pp 363-376

A cocktail of contaminants: how mixtures of pesticides at low concentrations affect aquatic communities

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The ubiquity of anthropogenic chemicals in nature poses a challenge to understanding how ecological communities are impacted by them. While we are rapidly gaining an understanding of how individual contaminants affect communities, communities are exposed to suites of contaminants yet investigations of the effects of diverse contaminant mixtures in aquatic communities are rare. I examined how a single application of five insecticides (malathion, carbaryl, chlorpyrifos, diazinon, and endosulfan) and five herbicides (glyphosate, atrazine, acetochlor, metolachlor, and 2,4-D) at low concentrations (2–16 p.p.b.) affected aquatic communities composed of zooplankton, phytoplankton, periphyton, and larval amphibians (gray tree frogs, Hyla versicolor, and leopard frogs, Rana pipiens). Using outdoor mesocosms, I examined each pesticide alone, a mix of insecticides, a mix of herbicides, and a mix of all ten pesticides. Individual pesticides had a wide range of direct and indirect effects on all trophic groups. For some taxa (i.e., zooplankton and algae), the impact of pesticide mixtures could largely be predicted from the impacts of individual pesticides; for other taxa (i.e., amphibians) it could not. For amphibians, there was an apparent direct toxic effect of endosulfan that caused 84% mortality of leopard frogs and an indirect effect induced by diazinon that caused 24% mortality of leopard frogs. When pesticides were combined, the mix of herbicides had no negative effects on the survival and metamorphosis of amphibians, but the mix of insecticides and the mix of all ten pesticides eliminated 99% of leopard frogs. Interestingly, these mixtures did not cause mortality in the gray tree frogs and, as a result, the gray tree frogs grew nearly twice as large due to reduced competition with leopard frogs. In short, wetland communities can be dramatically impacted by low concentrations of pesticides (both separate and combined) and these results offer important insights for the conservation of wetland communities.

Communicated by Ross Alford.