, Volume 159, Issue 1, pp 151-159
Date: 22 Oct 2008

Spatial autocorrelation and dispersal limitation in freshwater organisms

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Dispersal can limit the ranges of species and the diversity of communities. Despite its importance, little is known about its role in freshwater habitats and its relation to habitat type (lentic vs. lotic), especially for organisms with cryptic dispersal methods such as plankton. Poor dispersers are expected to show more clumped distributions or greater spatial autocorrelation (SA) in community composition than good dispersers. We examined patterns of SA across freshwater taxa with different dispersal modes (active vs. passive) and their association with habitat type (lake vs. stream) using 18 spatially explicit community composition data sets. We found significant relationships between SA and body size among taxa in lake habitats, but not in streams. However, the increase in SA with body size in lakes was driven entirely by fishes—organisms ranging in size from diatoms to macro-invertebrates showed equivalent levels of SA. These results support the idea that large organisms are less effective dispersers in aquatic environments, resulting in greater SA in community structure over broad scales. Streams may be effectively more connected than lakes as patterns of SA and body size were weaker in lotic habitats. Our data suggest that the critical threshold where greater body size increases dispersal limitation seems to come at the juncture between invertebrates and vertebrates rather than that between unicellular and multicellular organisms as has been previously suggested.

Communicated by Carla Caceres.