, Volume 138, Issue 3, pp 333-340
Date: 10 Jan 2004

Effects of stoichiometric dietary mixing on Daphnia growth and reproduction

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Herbivores often encounter nutritional deficiencies in their diets because of low nutrient content of plant biomass. Consumption of various diet items with different nutrient contents can potentially alleviate these nutritional deficiencies. However, most laboratory studies and modeling of herbivorous animals have been done with diets in which all food has uniform nutrient content. It is not clear whether heterogeneous versus uniform food of equal overall nutrient content is of equivalent nutritional value. We tested the effects of dietary mixing on performance of a model organism, Daphnia. We fed two species of Daphnia ( D. galeata, D. pulicaria) with diets of equivalent bulk stoichiometric food quality (C:P) and studied whether they would produce equivalent performance when C:P was uniform among cells or when the diet involved a mixture of high C:P and low C:P cells. Daphnia were fed saturating and limiting concentrations of a uniform food of moderate C:P (UNI) or mixtures (MIX) of high C:P (LOP) and low C:P (HIP) algae prepared to match C:P in UNI. Daphnia were also fed HIP and LOP algae separately. Juvenile growth rate and adult fecundity were measured. D. galeata performance in UNI and MIX treatments did not differ, indicating that partitioning of C and P among particles did not affect dietary quality. Similarly, D. pulicaria‘s performance was similar in the MIX and UNI treatments but only at low food abundance. In the high food treatment, both growth and reproduction were higher in the MIX treatment, indicating some benefit of a more heterogeneous diet. The mechanisms for this improvement are unclear. Also, food quality affected growth and reproduction even at low food levels for both D. pulicaria and D. galeata. Our results indicate that some species of zooplankton can benefit from stoichiometric heterogeneity on diet.