, Volume 138, Issue 2, pp 300-305
Date: 27 Nov 2003

Oviposition habitat selection in response to risk of predation in temporary pools: mode of detection and consistency across experimental venue

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Natural selection should favor females that avoid ovipositing where risk of predation is high for their progeny. Despite the large consequences of such oviposition behavior for individual fitness, population dynamics, and community structure, relatively few studies have tested for this behavior. Moreover, these studies have rarely assessed the mode of detection of predators, compared responses in prey species that vary in vulnerability to predators, or tested for the behavior in natural habitats. In an outdoor artificial pool experiment, we tested the oviposition responses of two dipteran species, Culiseta longiareolata (mosquito) and Chironomus riparius (midge), to the hemipteran predator, Notonecta maculata. Both dipteran species have similar life history characteristics, but Culiseta longiareolata larvae are highly vulnerable to predation by Notonecta, while Chironomus riparius larvae are not. As their vulnerabilities would suggest, Culiseta longiareolata, but not Chironomus riparius, strongly avoided ovipositing in pools containing Notonecta. An experiment in natural rock pools assessing oviposition by Culiseta longiareolata in response to Notonecta maculata yielded an oviposition pattern highly consistent with that of the artificial pool experiment. We also demonstrated that the cue for oviposition avoidance by Culiseta longiareolata was a predator-released chemical: Notonecta water (without Notonecta replenishment) repelled oviposition for 8 days. Oviposition avoidance and mode of detection of the predator have important implications for how to assess the true impact of predators and for the use of commercially produced kairomones for mosquito control.