, Volume 300, Issue 3, pp 435-446

Structure and proteoglycan composition of specialized regions of the elastic tendon of the chicken wing

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract.

The elastic tendon

The terms "elastic tendon" and "ligament propatagialis" both designate the same structure. The term "elastic tendon" employed in this work follows the paper of Oakes and Bialkower (1977), especially because we have found a muscle at the origin of the structure, which we have avoided naming "ligament," as used by Brown et al. (1994) for the owl.

of the avian wing has been described by others as a unique structure with elastic properties due to the predominance of elastic fibers in the midsubstance. Further analyses of the tendon have shown it to possess five anatomically distinct regions. Besides the major elastic region, a distally located fibrocartilage and three tendinous regions are present. The tendinous regions connect: (1) the muscle to the elastic region, (2) the elastic region to the fibrocartilage and (3) the latter to the insertion site. The elastic region possesses thick and abundant elastic fibers and very thin, interconnecting collagen fibers. The collagen fibers in the sesamoid fibrocartilage are thick and interwoven, defining spaces occupied by fibrochondrocytes embedded in a non-fibrillar and highly metachromatic matrix. Biochemical analyses have shown that the fibrocartilage has about tenfold the amount of glycosaminoglycans (GAGs) found in the other regions. The main GAG in this region was chondroitin sulfate (CS) (plus keratan sulfate as detected immunocytochemically), while the other regions showed variable amounts of CS, dermatan sulfate (DS) and heparan sulfate. Further analyses have shown that a large CS-bearing proteoglycan is found in the fibrocartilage. The elastic region possesses two main proteoglycans, a large CS-bearing proteoglycan (which reacted with an antibody against keratan sulfate after chondroitinase ABC treatment) and a predominant DS-bearing proteoglycan, which showed immunoreactivity when assayed with an anti-biglycan antibody. The results demonstrate that the elastic tendon is a complex structure with complex regional structural and compositional adaptations, suited to different biomechanical roles.

Electronic Publication