Skip to main content

Advertisement

Log in

Calcium buffer proteins are specific markers of human retinal neurons

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Ca2+-buffer proteins (CaBPs) modulate the temporal and spatial characteristics of transient intracellular Ca2+-concentration changes in neurons in order to fine-tune the strength and duration of the output signal. CaBPs have been used as neurochemical markers to identify and trace neurons of several brain loci including the mammalian retina. The CaBP content of retinal neurons, however, varies between species and, thus, the results inferred from animal models cannot be utilised directly by clinical ophthalmologists. Moreover, the shortage of well-preserved human samples greatly impedes human retina studies at the cellular and network level. Our purpose has therefore been to examine the distribution of major CaBPs, including calretinin, calbindin-D28, parvalbumin and the recently discovered secretagogin in exceptionally well-preserved human retinal samples. Based on a combination of immunohistochemistry, Neurolucida tracing and Lucifer yellow injections, we have established a database in which the CaBP marker composition can be defined for morphologically identified cell types of the human retina. Hence, we describe the full CaBP make-up for a number of human retinal neurons, including HII horizontal cells, AII amacrine cells, type-1 tyrosine-hydroxylase-expressing amacrine cells and other lesser known neurons. We have also found a number of unidentified cells whose morphology remains to be characterised. We present several examples of the colocalisation of two or three CaBPs with slightly different subcellular distributions in the same cell strongly suggesting a compartment-specific division of labour of Ca2+-buffering by CaBPs. Our work thus provides a neurochemical framework for future ophthalmological studies and renders new information concerning the cellular and subcellular distribution of CaBPs for experimental neuroscience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Attems J, Alpár A, Spence L, McParland S, Heikenwalder M, Uhlén M, Tanila H, Hökfelt TGM, Harkány T (2012) Clusters of secretagogin-expressing neurons in the aged human olfactory tract lack terminal differentiation. Proc Natl Acad Sci U S A 109:6259–6264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casini G, Rickman DW, Trasarti L, Brecha NC (1998) Postnatal development of parvabumin immunoreactive amacrine cells in the rabbit retina. Brain Res Dev Brain Res 111:107–117

    Article  CAS  PubMed  Google Scholar 

  • Dacey DM (1993) Morphology of a small-field bistratified ganglion cell type in the macaque and human retina. Vis Neurosci 10:1081–1098

    Article  CAS  PubMed  Google Scholar 

  • Dacey DM, Peterson BB, Robinson FR, Gamlin PD (2003) Fireworks in the primate retina: in vitro photodynamics reveals diverse LGN-projecting ganglion cell types. Neuron 37:15–27

    Article  CAS  PubMed  Google Scholar 

  • Debertin G, Kántor O, Kovács-Öller T, Balogh L, Szabó-Meleg E, Orbán J, Nyitrai M, Völgyi B (2015) Tyrosine hydroxylase positive perisomatic rings are formed around various amacrine cell types in the mammalian retina. J Neurochem 134:416–428

    Article  CAS  PubMed  Google Scholar 

  • Eliasieh K, Liets LC, Chalupa LM (2007) Cellular reorganization in the human retina during normal aging. Invest Ophthalmol Vis Sci 48:2824–2830

    Article  PubMed  Google Scholar 

  • Endo T, Takazawa K, Kobayashi S, Onaya T (1986) Immunochemical and immunohistochemical localization of parvalbumin in rat nervous tissues. J Neurochem 46:892–898

    Article  CAS  PubMed  Google Scholar 

  • Famiglietti EV (1992a) Polyaxonal amacrine cells of rabbit retina: morphology and stratification of PA1 cells. J Comp Neurol 316:391–405

    Article  CAS  PubMed  Google Scholar 

  • Famiglietti EV (1992b) Polyaxonal amacrine cells of rabbit retina: PA2, PA3, and PA4 cells. Light and electron microscopic studies with a functional interpretation. J Comp Neurol 316:422–446

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Bueno I, Fernández-Sánchez L, Gayoso MJ, García-Gutierrez MT, Pastor JC, Cuenca N (2012) Time course modifications in organotypic culture of human neuroretina. Exp Eye Res 104:26–38

    Article  CAS  PubMed  Google Scholar 

  • Gábriel R, Witkovsky P (1998) Cholinergic, but not the rod pathway-related glycinergic (All), amacrine cells contain calretinin in the rat retina. Neurosci Lett 247:179–182

    Article  PubMed  Google Scholar 

  • Gábriel R, Lesauter J, Bánvölgyi T, Petrovics G, Silver R, Witkovsky P (2004) AII amacrine neurons of the rat retina show diurnal and circadian rhythms of parvalbumin immunoreactivity. Cell Tissue Res 315:181–186

    Article  PubMed  Google Scholar 

  • Garcia-Segura LM, Baetens D, Roth J, Norman AW, Orci L (1984) Immunohistochemical mapping of calcium-binding protein immunoreactivity in the rat central nervous system. Brain Res 296:75–86

    Article  CAS  PubMed  Google Scholar 

  • Gartner W, Lang W, Leutmetzer F, Domanovits H, Waldhaeusl W, Wagner L (2001) Cerebral expression and serum detectability of secretagogin, a recently cloned EF-hand Ca(2+) binding protein. Cereb Cortex 11:1160–1169

    Article  Google Scholar 

  • Ghosh KK, Bujan S, Haverkamp S, Feigenspan A, Wässle H (2004) Types of bipolar cells in the mouse retina. J Comp Neurol 469:70–82

    Article  PubMed  Google Scholar 

  • Grünert U, Martin PR, Wässle H (1994) Immunocytochemical analysis of bipolar cells in the macaque monkey retina. J Comp Neurol 348:607–627

    Article  PubMed  Google Scholar 

  • Haley TL, Pochet R, Baizer L, Burton MD, Crabb JW, Parmentier M, Polans AS (1995) Calbindin D-28K immunoreactivity of human cone cells varies with retinal position. Vis Neurosci 12:301–307

    Article  CAS  PubMed  Google Scholar 

  • Haverkamp S, Wässle H (2000) Immunocytochemical analysis of the mouse retina. J Comp Neurol 424:1–23

    Article  CAS  PubMed  Google Scholar 

  • Haverkamp S, Haeseleer F, Hendrickson A (2003) A comparison of immunocytochemical markers to identify bipolar cell types in human and monkey retina. Visual Neurosci 20:589–600

    Article  Google Scholar 

  • Jacobowitz DM, Winsky L (1991) Immunocytochemical localization of calretinin in the forebrain of the rat. J Comp Neurol 304:198–218

    Article  CAS  PubMed  Google Scholar 

  • Kántor O, Benkő Z, Énzsöly A, Dávid C, Naumann A, Nitschke R, Szabó A, Pálfi E, Orbán J, Nyitrai M, Németh J, Szél Á, Lukáts Á, Völgyi B (2015a) Characterization of connexin36 gap junctions in the human outer retina. Brain Struct Funct (in press)

  • Kántor O, Varga A, Tóth R, Énzsöly A, Pálfi E, Kovács-Öller T, Nitschke R, Szél Á, Székely A, Völgyi B, Négyessy L, Somogyvári Z, Lukáts Á (2015b) Stratified organization and disorganization of inner plexiform layer revelaed by TNAP activity in healthy and diabetic rat retina. Cell Tissue Res 359:409–421

    Article  PubMed  Google Scholar 

  • Knop G, Pottek M, Monyer H, Weiler R, Dedek K (2014) Morphological and physiological properties of EGFP- expressing wide-field amacrine cells in the ChAT-EGFP mouse line. Eur J Neurosci 39:800–810

    Article  PubMed  Google Scholar 

  • Kolb H, Linberg KA, Fischer SK (1992) Neurons of the human retina: a Golgi study. J Comp Neurol 318:147–187

    Article  CAS  PubMed  Google Scholar 

  • Kolb H, Zhang L, Dekorver L, Cuenca N (2002) A new look at calretinin-immunoreactive amacrine cell types in the monkey retina. J Comp Neurol 453:168–184

    Article  PubMed  Google Scholar 

  • Lee EJ, Han JW, Kim HJ, Kim IB, Lee MY, Oh SJ, Chung JW, Chun MH (2003) The immunocytochemical localization of connexin 36 at rod and cone gap junctions in the guinea pig retina. Eur J Neurosci 18:2925–2934

    Article  PubMed  Google Scholar 

  • Lee SC, Weltzien F, Madigan MC, Martin PR, Grünert U (2016) Identification of AII amacrine, displaced amacrine, and bistratified ganglion cell types in human retina with antibodies against calretinin. J Comp Neurol 524:39–53

  • Liu WL, Hoshi H, Mills SL, Massey SC (2010) AII amacrine cell input to OFF ganglion cells via α1 glycine receptors in the rabbit retina. Invest Ophthalmol Vis Sci 51:E-Abstract 1209

    Google Scholar 

  • Mariani AP (1984) Bipolar cells in the monkey retina selective for the cones likely to be blue-sensitive. Nature 308:184–186

    Article  CAS  PubMed  Google Scholar 

  • Massey SC, Mills SL (1996) A calbindin-immunoreactive cone bipolar cell type in the rabbit retina. J Comp Neurol 366:15–33

    Article  CAS  PubMed  Google Scholar 

  • Mills SL, Massey SC (1998) The kinetics of tracer movement through homologous gap junctions in the rabbit retina. Vis Neurosci 15:765–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulder J, Zilberter M, Spence L, Tortoriello G, Uhlén M, Yanagawa Y, Aujard F, Hökfelt T, Harkány T (2009) Secretagogin is a Ca2+ binding protein specifying subpopulations of telencephalic neurons. Proc Natl Acad Sci U S A 106:22492–22497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park HY, Kim JH, Park CK (2014) Neuronal cell death in the inner retina and the influence of vascular endothelial growth factor inhibition in a diabetic rat model. Am J Pathol 184:1752–1762

    Article  CAS  PubMed  Google Scholar 

  • Pasteels B, Rogers J, Blanchier F, Pochet R (1990) Calbindin and calretinin localization in retina from different species. Vis Neurosci 5:1–16

    Article  CAS  PubMed  Google Scholar 

  • Percival KA, Martin PR, Grünert U (2013) Organisation of koniocellular-projecting ganglion cells and diffuse bipolar cells in the primate fovea. Eur J Neurosci 37:1072–1089

    Article  PubMed  Google Scholar 

  • Peterson BB, Dacey DM (2000) Morphology of wide-field bistratified and diffuse human retinal ganglion cells. Vis Neurosci 17:567–578

    Article  CAS  PubMed  Google Scholar 

  • Puthussery T, Gayet-Primo J, Taylor WR (2010) Localization of the calcium-binding protein secretagogin in cone bipolar cells of the mammalian retina. J Comp Neurol 518:513–525

    Article  CAS  PubMed  Google Scholar 

  • Röhlich P, Szél Á (1993) Binding sites of photoreceptor specific antibodies COS-1, OS-2 and AO. Curr Eye Res 12:935–944

    Article  PubMed  Google Scholar 

  • Sanna PP, Keyser KT, Battenberg E, Bloom FE (1990) Parvalbumin immunoreactivity in the rat retina. Neurosci Lett 118:136–139

    Article  CAS  PubMed  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez YH, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  • Schwaller B (2009) The continuing disappearance of "pure" Ca2+ buffers. Cell Mol Life Sci 66:275–300

    Article  CAS  PubMed  Google Scholar 

  • Schwaller B (2015) Cytosolic Ca2+ buffers. Cold Spring Harb Perspect Biol 2:a004051

    Google Scholar 

  • Souza CF de, Kalloniatis M, Christie DL, Polkinghorne PJ, McGhee CN, Acosta ML (2012) Creatine transporter immunolocalization in aged human and detached retinas. Invest Ophthalmol Vis Sci 53:1936–1945

  • Stafford DK, Dacey DM (1997) Physiology of the A1 amacrine: a spiking, axon-bearing interneuron of the macaque monkey retina. Vis Neurosci 14:507–522

    Article  CAS  PubMed  Google Scholar 

  • Voigt T, Wässle H (1987) Dopaminergic innervation of AII amacrine cells in mammalian retina. J Neurosci 7:4115–4128

    CAS  PubMed  Google Scholar 

  • Völgyi B, Pollak E, Buzás P, Gábriel R (1997) Calretinin in neurochemically well-defined cell populations of rabbit retina. Brain Res 763:79–86

    Article  PubMed  Google Scholar 

  • Völgyi B, Xin D, Amarillo Y, Bloomfield SA (2001) Morphology and physiology of the polyaxonal amacrine cells in the rabbit retina. J Comp Neurol 440:109–125

    Article  PubMed  Google Scholar 

  • Völgyi B, Debertin G, Balogh M, Popovich E, Kovács-Öller T (2014) Compartment-specific tyrosine hydroxylase-positive innervation to AII amacrine cells in the rabbit retina. Neuroscience 270:88–97

    Article  PubMed  Google Scholar 

  • Wässle H, Grünert U, Röhrenbeck J (1993) Immunocytochemical staining of AII-amacrine cells in the rat retina with antibodies against parvalbumin. J Comp Neurol 332:407–420

    Article  PubMed  Google Scholar 

  • Weltzien F, Dimarco S, Protti DA, Daraio T, Martin PR, Grünert U (2014) Characterization of secretagogin-immunoreactive amacrine cells in marmoset retina. J Comp Neurol 522:435–455

    Article  CAS  PubMed  Google Scholar 

  • Weltzien F, Percival KA, Martin PR, Grünert U (2015) Analysis of bipolar and amacrine populations in marmoset retina. J Comp Neurol 523:313–334

    Article  CAS  PubMed  Google Scholar 

  • Witkovsky P (2004) Dopamine and retinal function. Doc Ophthalmol 108:17–40

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The authors thank Zsuzsanna Vidra, Brigitta Fadgyas and Dr. Gábor Baksa for their technical or organisational assistance. The authors are grateful to Dr. Karin Dedek for the sheep secretagogin antibody and to Dr. Mark Eyre for assistance with the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béla Völgyi.

Additional information

This work was supported by OTKA K105247 to B.V. and OTKA K-113147 to Z.S. and by the Hungarian Brain Research Program (KTIA_NAP_13-2-2015-0008) to B.V. This research was also supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of the TÁMOP-4.2.4.A/2-11/1-2012-0001 “National Excellence Program” to B.V.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 73 kb)

Supplemental Figure 1

Images displaying results of negative control experiments carried out on human retinal cross sections by the omission of primary antibodies and treatment with donkey anti-goat IgG conjugated with DyLight 405 (a, blue), donkey anti-guinea pig conjugated with Cy3 (b, red), donkey anti-rat IgG conjugated with DyLight 649 (c, green), donkey anti-mouse IgG conjugated with Alexa 488 (e, blue), donkey anti-mouse IgG conjugated with DyLight 649 (f, red) and donkey anti-rabbit IgG conjugated with Alexa 555 (g, red) secondary antibodies. Composites of a–c and e–g are shown in d, h. Clearly, the secondary antibodies failed to label any neuronal structure in the human retina and only resulted in some negligible background staining mostly around vessels. Faint autofluorescence of photoreceptor outer segments was also observed. Bars 20 μm. (GIF 50 kb)

High resolution image (TIF 3378 kb)

Supplemental Figure 2

Cross sections of the Wistar rat retina stained with antisera utilised in this study. a–d Immunoreactions with goat anti-PV (a, blue), rabbit anti-PV (b, red) and mouse anti-PV (c, green) antisera and a composite image (d). All utilised antibodies resulted in a characteristic staining of PV+ inner retinal cells in the rat retina, including AII amacrine cells. All PV antibodies labelled the same retinal structures. e–h Immunoreactions with mouse anti-CaR (e, blue), goat anti-CaR (f, red) and rabbit anti-CaR (g, green) antisera and a composite image (d). All utilised antibodies resulted in a characteristic staining with CaR+ inner retinal cells in the rat retina, including starburst amacrine cell somata in both the INL and the GCL and three immunolabelled bands in the IPL. i Cross-section of the Wistar rat retina stained with the goat anti-SCGN serum. The antibody specifically stained a population of bipolar cells in the rat retina corresponding strongly to previous descriptions by Puthussery and colleagues (2010). Bars 20 μm (a-h), 10 μm (i). (GIF 194 kb)

High resolution image (TIF 7868 kb)

Supplemental Figure 3

Cross sections of Wistar rat cortex stained with antisera utilised in this study. a–d Low-power photomicrographs of the cortex stained with goat anti-PV (a, blue), rabbit anti-PV (b, red) and mouse anti-PV (c, green) antisera and a composite image (d). Images display PV+ cortical basket cells and their PV+ axon terminals surrounding pyramidal cell somata (asterisks). All sera mark the same neuronal structures. e–h PV+ cortical structures labelled with goat anti-PV (e, blue), rabbit anti-PV (f, red) and mouse anti-PV (g, green) antisera and a composite image (h). i–l Cortical cross-sections labelled with goat anti-CaR (i, blue), rabbit anti-CaR (j, red) and mouse anti-CaR (k, green) antibodies and a composite image (l). Cortical interneurons and neuronal fibres are stained with all three antibodies. Each antiserum labelled the same neuronal elements. Bars 20 μm (a-d), 40 μm (e-l). (GIF 235 kb)

High resolution image (TIF 7431 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kántor, O., Mezey, S., Adeghate, J. et al. Calcium buffer proteins are specific markers of human retinal neurons. Cell Tissue Res 365, 29–50 (2016). https://doi.org/10.1007/s00441-016-2376-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2376-z

Keywords

Navigation