Skip to main content

Advertisement

Log in

Syncytin-1 in differentiating human myoblasts: relationship to caveolin-3 and myogenin

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Myoblasts fuse to form myotubes, which mature into skeletal muscle fibres. Recent studies indicate that an endogenous retroviral fusion gene, syncytin-1, is important for myoblast fusions in man. We have now expanded these data by examining the immunolocalization of syncytin in human myoblasts induced to fuse. Additionally, we have compared the localization of syncytin with the localization of caveolin-3 and of myogenin, which are also involved in myoblast fusion and maturation. Syncytin was localized to areas of the cell membrane and to filopodial structures connecting myoblasts to each other and to myotubes. Weaker staining was present over intracellular vesicles and tubules. Caveolin-3 was detected in the sarcolemma and in vesicles and tubules in a subset of myoblasts and myotubes. The strongest staining occurred in multinucleated myotubes. Wide-field fluorescence microscopy indicated a partial colocalization of syncytin and caveolin-3 in a subset of myoblasts. Super-resolution microscopy showed such colocalization to occur in the sarcolemma. Myogenin was restricted to nuclei of myoblasts and myotubes and the strongest staining occurred in multinucleated myotubes. Syncytin staining was observed in both myogenin-positive and myogenin-negative cells. Antisense treatment downmodulated syncytin-1 expression and inhibited myoblast cell fusions. Importantly, syncytin-1 antisense significantly decreased the frequency of multinucleated myotubes demonstrating that the treatment inhibited secondary myoblast fusions. Thus, syncytin is involved in human myoblast fusions and is localized in areas of contact between fusing cells. Moreover, syncytin and caveolin-3 might interact at the level of the sarcolemma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aagaard L, Bjerregaard B, Kjeldbjerg AL, Pedersen FS, Larsson LI, Rossi JJ (2012) Silencing of endogenous envelope genes in human choriocarcinoma cells shows that envPb1 is involved in heterotypic cell fusions. J Gen Virol 93:1696–1699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beer C, Andersen DS, Rojek A, Pedersen L (2005) Caveola-dependent endocytic entry of amphotropic murine leukemia virus. J Virol 79:10776–10787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bjerregaard B, Holck S, Christensen IJ, Larsson LI (2006) Syncytin is involved in breast cancer-endothelial cell fusions. Cell Mol Life Sci 63:1906–1911

    Article  CAS  PubMed  Google Scholar 

  • Bjerregaard B, Talts JF, Larsson LI (2011) The endogenous envelope protein syncytin is involved in myoblast fusion. In: Larsson LI (ed) Cell fusions: regulation and control. Springer, Berlin, pp 267–275

    Chapter  Google Scholar 

  • Blaise S, de Parseval N, Bénit L, Heidmann T (2003) Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. Proc Natl Acad Sci U S A 100:13013–13018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blond JL, Lavillette D, Cheynet V, Bouton O, Oriol G, Chapel-Fernandes S, Mandrand B, Mallet F, Cosset FL (2000) An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J Virol 74:3321–3329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bolte S, Cordelières FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232

    Article  CAS  PubMed  Google Scholar 

  • Chen EH, Olson EN (2005) Unveiling the mechanisms of cell-cell fusion. Science 308:369–373

    Article  CAS  PubMed  Google Scholar 

  • Davis HL, Whalen RG, Demeneix BA (1993) Direct gene transfer into skeletal muscle in vivo: factors affecting efficiency of transfer and stability of expression. Hum Gene Ther 4:151–159

    Article  PubMed  Google Scholar 

  • Dupressoir A, Vernochet C, Bawa O, Harper F, Pierron G, Opolon P, Heidmann T (2009) Syncytin-A knockout mice demonstrate the critical role in placentation of a fusogenic, endogenous retrovirus-derived, envelope gene. Proc Natl Acad Sci U S A 106:12127–12132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dupressoir A, Lavialle C, Heidmann T (2012) From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. Placenta 33:663–671

    Article  CAS  PubMed  Google Scholar 

  • Frendo JL, Olivier D, Cheynet V, Blond JL, Bouton O, Vidaud M, Rabreau M, Evain-Brion D, Mallet F (2003) Direct involvement of HERV-W Env glycoprotein in human trophoblast cell fusion and differentiation. Mol Cell Biol 23:3566–3574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Galbiati F, Volonte D, Engelman JA, Scherer PE, Lisanti MP (1999) Targeted down-regulation of caveolin-3 is sufficient to inhibit myotube formation in differentiating C2C12 myoblasts. Transient activation of p38 mitogen-activated protein kinase is required for induction of caveolin-3 expression and subsequent myotube formation. J Biol Chem 274:30315–30321

    Article  CAS  PubMed  Google Scholar 

  • Gazzerro E, Sotgia F, Bruno C, Lisanti MP, Minetti C (2010) Caveolinopathies: from the biology of caveolin-3 to human diseases. Eur J Hum Genet 18:137–145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gullberg D (2003) Cell biology: the molecules that make muscle. Nature 424:138–140

    Article  CAS  PubMed  Google Scholar 

  • Hansen CG, Nichols BJ (2010) Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol 20:177–186

    Article  CAS  PubMed  Google Scholar 

  • Jansen KM, Pavlath GK (2008) Molecular control of mammalian myoblast fusion. Methods Mol Biol 475:115–133

    Article  CAS  PubMed  Google Scholar 

  • Koch D, Westermann M, Kessels MM, Qualmann B (2012) Ultrastructural freeze-fracture immunolabeling identifies plasma membrane-localized syndapin II as a crucial factor in shaping caveolae. Histochem Cell Biol 138:215–230

    Article  CAS  PubMed  Google Scholar 

  • Larsson LI (2004) Novel actions of tyrphostin AG 879: inhibition of RAF-1 and HER-2 expression combined with strong antitumor effects on breast cancer cells. Cell Mol Life Sci 61:2624–2631

    Article  CAS  PubMed  Google Scholar 

  • Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L, LaVallie E, Tang XY, Edouard P, Howes S, Keith JC Jr, McCoy JM (2000) Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403:785–789

    Article  CAS  PubMed  Google Scholar 

  • Parton RG, Way M, Zorzi N, Stang E (1997) Caveolin-3 associates with developing T-tubules during muscle differentiation. J Cell Biol 136:137–154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pavlath GK (2011) Current progress towards understanding mechanisms of myoblast fusion in mammals. In: Larsson LI (ed) Cell fusions: regulation and control. Springer, Berlin, pp 249–265

    Chapter  Google Scholar 

  • Quach NL, Biressi S, Reichardt LF, Keller C, Rando TA (2009) Focal adhesion kinase signaling regulates the expression of caveolin 3 and beta1 integrin, genes essential for normal myoblast fusion. Mol Biol Cell 20:3422–3435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richardson BE, Nowak SJ, Baylies MK (2008) Myoblast fusion in fly and vertebrates: new genes, new processes and new perspectives. Traffic 9:1050–1059

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sabourin LA, Rudnicki MA (2000) The molecular regulation of myogenesis. Clin Genet 57:16–25

    Article  CAS  PubMed  Google Scholar 

  • Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scriven DR, Klimek A, Asghari P, Bellve K, Moore ED (2005) Caveolin-3 is adjacent to a group of extradyadic ryanodine receptors. Biophys J 89:1893–1901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Søe K, Andersen TL, Hobolt-Pedersen AS, Bjerregaard B, Larsson LI, Delaissé JM (2011) Involvement of human endogenous retroviral syncytin-1 in human osteoclast fusion. Bone 48:837–846

    Article  PubMed  Google Scholar 

  • Strick R, Ackermann S, Langbein M, Swiatek J, Schubert SW, Hashemol-hosseini S, Koscheck T, Fasching PA, Schild RL, Beckmann MW, Strissel PL (2007) Proliferation and cell-cell fusion of endometrial carcinoma are induced by the human endogenous retroviral Syncytin-1 and regulated by TGF-beta. J Mol Med 85:23–38

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars-Inge Larsson.

Additional information

These studies were supported by the NOVO-Nordisk foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bjerregard, B., Ziomkiewicz, I., Schulz, A. et al. Syncytin-1 in differentiating human myoblasts: relationship to caveolin-3 and myogenin. Cell Tissue Res 357, 355–362 (2014). https://doi.org/10.1007/s00441-014-1930-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1930-9

Keywords

Navigation