Skip to main content
Log in

Roles of chromatin remodeling BAF complex in neural differentiation and reprogramming

Cell and Tissue Research Aims and scope Submit manuscript

Abstract

ATP-dependent BAF chromatin remodeling complexes play an essential role in the maintenance of the gene expression program by regulating the structure of chromatin. There is increasing evidence that BAF complexes based on the alternative ATPase subunits, Brg1 and Brm, control the differentiation of neural stem cells (NSCs) to generate distinct neural cell types and modulate trans-differentiation between cell types. The BAF complexes have dedicated functions at different stages of neural differentiation that appear to arise by combinatorial assembly of their subunits. Furthermore, the differentiation of NSCs is regulated by the tight interactions between the BAF chromatin remodeling complex and the transcriptional machinery. Here, we review recent insights into the functional interaction between BAF complexes and various transcription factors (TFs) in neural differentiation and cellular reprogramming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Aizawa H, Hu SC, Bobb K, Balakrishnan K, Ince G, Gurevich I, Cowan M, Ghosh A (2004) Dendrite development regulated by CREST, a calcium-regulated transcriptional activator. Science 303:197–202

    Article  CAS  PubMed  Google Scholar 

  • Albini S, Coutinho P, Malecova B, Giordani L, Savchenko A, Forcales SV, Puri PL (2013) Epigenetic reprogramming of human embryonic stem cells into skeletal muscle cells and generation of contractile myospheres. Cell Rep 3:661–670

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arlotta P, Molyneaux BJ, Chen J, Inoue J, Kominami R, Macklis JD (2005) Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45:207–221

    Article  CAS  PubMed  Google Scholar 

  • Arlotta P, Molyneaux BJ, Jabaudon D, Yoshida Y, Macklis JD (2008) Ctip2 controls the differentiation of medium spiny neurons and the establishment of the cellular architecture of the striatum. J Neurosci 28:622–632

    Article  CAS  PubMed  Google Scholar 

  • Battaglioli E, Andres ME, Rose DW, Chenoweth JG, Rosenfeld MG, Anderson ME, Mandel G (2002) REST repression of neuronal genes requires components of the hSWI.SNF complex. J Biol Chem 277:41038–41045

    Article  CAS  PubMed  Google Scholar 

  • Berninger B, Costa MR, Koch U, Schroeder T, Sutor B, Grothe B, Gotz M (2007) Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J Neurosci 27:8654–8664

    Article  CAS  PubMed  Google Scholar 

  • Buffo A, Vosko MR, Erturk D, Hamann GF, Jucker M, Rowitch D, Gotz M (2005) Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair. Proc Natl Acad Sci USA 102:18183–18188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Bruijn DR, Peters WJ, de Sousa C, Lopes SM, van Dijk AH, Willemse MP, Pfundt R, de Boer P, Geurts van Kessel A (2006) Targeted disruption of the synovial sarcoma-associated SS18 gene causes early embryonic lethality and affects PPARBP expression. Hum Mol Genet 15:2936–2944

    Article  PubMed  Google Scholar 

  • Enomoto T, Ohmoto M, Iwata T, Uno A, Saitou M, Yamaguchi T, Kominami R, Matsumoto I, Hirota J (2011) Bcl11b/Ctip2 controls the differentiation of vomeronasal sensory neurons in mice. J Neurosci 31:10159–10173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Estruch SB, Buzon V, Carbo LR, Schorova L, Luders J, Estebanez-Perpina E (2012) The oncoprotein BCL11A binds to orphan nuclear receptor TLX and potentiates its transrepressive function. PLoS ONE 7:e37963

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Forcales SV, Albini S, Giordani L, Malecova B, Cignolo L, Chernov A, Coutinho P, Saccone V, Consalvi S, Williams R et al (2012) Signal-dependent incorporation of MyoD-BAF60c into Brg1-based SWI/SNF chromatin-remodelling complex. EMBO J 31:301–316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gotz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788

    Article  PubMed  Google Scholar 

  • Guillemot F (2007) Cell fate specification in the mammalian telencephalon. Prog Neurobiol 83:37–52

    Article  CAS  PubMed  Google Scholar 

  • Heins N, Malatesta P, Cecconi F, Nakafuku M, Tucker KL, Hack MA, Chapouton P, Barde YA, Gotz M (2002) Glial cells generate neurons: the role of the transcription factor Pax6. Nat Neurosci 5:308–315

    Article  CAS  PubMed  Google Scholar 

  • Ho L, Ronan JL, Wu J, Staahl BT, Chen L, Kuo A, Lessard J, Nesvizhskii AI, Ranish J, Crabtree GR (2009) An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc Natl Acad Sci USA 106:5181–5186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • John A, Brylka H, Wiegreffe C, Simon R, Liu P, Juttner R, Crenshaw EB 3rd, Luyten FP, Jenkins NA, Copeland NG et al (2012) Bcl11a is required for neuronal morphogenesis and sensory circuit formation in dorsal spinal cord development. Development 139:1831–1841

    Article  CAS  PubMed  Google Scholar 

  • Kadoch C, Hargreaves DC, Hodges C, Elias L, Ho L, Ranish J, Crabtree GR (2013) Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Gen 45:592–601

    Article  CAS  Google Scholar 

  • Kim JK, Huh SO, Choi H, Lee KS, Shin D, Lee C, Nam JS, Kim H, Chung H, Lee HW et al (2001) Srg3, a mouse homolog of yeast SWI3, is essential for early embryogenesis and involved in brain development. Mol Cell Biol 21:7787–7795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kleger A, Mahaddalkar PU, Katz SF, Lechel A, Joo JY, Loya K, Lin Q, Hartmann D, Liebau S, Kraus JM et al (2012) Increased reprogramming capacity of mouse liver progenitor cells, compared with differentiated liver cells, requires the BAF complex. Gastroenterology 142:907–917

    Article  PubMed  Google Scholar 

  • Kuo TY, Chen CY, Hsueh YP (2010a) Bcl11A/CTIP1 mediates the effect of the glutamate receptor on axon branching and dendrite outgrowth. J Neurochem 114:1381–1392

    CAS  PubMed  Google Scholar 

  • Kuo TY, Hong CJ, Chien HL, Hsueh YP (2010b) X-linked mental retardation gene CASK interacts with Bcl11A/CTIP1 and regulates axon branching and outgrowth. J Neurosci Res 88:2364–2373

    CAS  PubMed  Google Scholar 

  • Leone DP, Srinivasan K, Chen B, Alcamo E, McConnell SK (2008) The determination of projection neuron identity in the developing cerebral cortex. Curr Opin Neurobiol 18:28–35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lessard J, Wu JI, Ranish JA, Wan M, Winslow MM, Staahl BT, Wu H, Aebersold R, Graef IA, Crabtree GR (2007) An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55:201–215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li W, Xiong Y, Shang C, Twu KY, Hang CT, Yang J, Han P, Lin CY, Lin CJ, Tsai FC et al (2013) Brg1 governs distinct pathways to direct multiple aspects of mammalian neural crest cell development. Proc Natl Acad Sci USA 110:1738–1743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lickert H, Takeuchi JK, Von Both I, Walls JR, McAuliffe F, Adamson SL, Henkelman RM, Wrana JL, Rossant J, Bruneau BG (2004) Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature 432:107–112

    Article  CAS  PubMed  Google Scholar 

  • Limpert AS, Bai S, Narayan M, Wu J, Yoon SO, Carter BD, Lu QR (2013) NF-kappaB forms a complex with the chromatin remodeler BRG1 to regulate Schwann cell differentiation. J Neurosci 33:2388–2397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsumoto S, Banine F, Struve J, Xing R, Adams C, Liu Y, Metzger D, Chambon P, Rao MS, Sherman LS (2006) Brg1 is required for murine neural stem cell maintenance and gliogenesis. Dev Biol 289:372–383

    Article  CAS  PubMed  Google Scholar 

  • Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD (2007) Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 8:427–437

    Article  CAS  PubMed  Google Scholar 

  • MuhChyi C, Juliandi B, Matsuda T, Nakashima K (2013) Epigenetic regulation of neural stem cell fate during corticogenesis. Int J Dev Neurosci 31:424–433

    Article  PubMed  Google Scholar 

  • Ninkovic J, Steiner-Mezzadri A, Jawerka M, Akinci U, Masserdotti G, Petricca S, Fischer J, von Holst A, Beckers J, Lie CD et al (2013) The BAF Complex Interacts with Pax6 in Adult Neural Progenitors to Establish a Neurogenic Cross-Regulatory Transcriptional Network. Cell Stem Cell 13:403–418

    Article  CAS  PubMed  Google Scholar 

  • Phelan ML, Sif S, Narlikar GJ, Kingston RE (1999) Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol Cell 3:247–253

    Article  CAS  PubMed  Google Scholar 

  • Pinto L, Mader MT, Irmler M, Gentilini M, Santoni F, Drechsel D, Blum R, Stahl R, Bulfone A, Malatesta P et al (2008) Prospective isolation of functionally distinct radial glial subtypes–lineage and transcriptome analysis. Mol Cell Neurosci 38:15–42

    Article  CAS  PubMed  Google Scholar 

  • Pontious A, Kowalczyk T, Englund C, Hevner RF (2008) Role of intermediate progenitor cells in cerebral cortex development. Dev Neurosci 30:24–32

    Article  CAS  PubMed  Google Scholar 

  • Qiu Z, Ghosh A (2008) A calcium-dependent switch in a CREST-BRG1 complex regulates activity-dependent gene expression. Neuron 60:775–787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ronan JL, Wu W, Crabtree GR (2013) From neural development to cognition: unexpected roles for chromatin. Nat Rev Genet 14:347–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rouaux C, Bhai S, Arlotta P (2012) Programming and reprogramming neuronal subtypes in the central nervous system. Dev Neurobiol 72:1085–1098

    Article  PubMed  Google Scholar 

  • Schaniel C, Ang YS, Ratnakumar K, Cormier C, James T, Bernstein E, Lemischka IR, Paddison PJ (2009) Smarcc1/Baf155 couples self-renewal gene repression with changes in chromatin structure in mouse embryonic stem cells. Stem Cells 27:2979–2991

    CAS  PubMed  Google Scholar 

  • Schuurmans C, Armant O, Nieto M, Stenman JM, Britz O, Klenin N, Brown C, Langevin LM, Seibt J, Tang H et al (2004) Sequential phases of cortical specification involve Neurogenin-dependent and -independent pathways. EMBO J 23:2892–2902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shitamukai A, Konno D, Matsuzaki F (2011) Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J Neurosci 31:3683–3695

    Article  CAS  PubMed  Google Scholar 

  • Simon R, Brylka H, Schwegler H, Venkataramanappa S, Andratschke J, Wiegreffe C, Liu P, Fuchs E, Jenkins NA, Copeland NG et al (2012) A dual function of Bcl11b/Ctip2 in hippocampal neurogenesis. EMBO J 31:2922–2936

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singhal N, Graumann J, Wu G, Arauzo-Bravo MJ, Han DW, Greber B, Gentile L, Mann M, Scholer HR (2010) Chromatin-Remodeling Components of the BAF Complex Facilitate Reprogramming. Cell 141:943–955

    Article  CAS  PubMed  Google Scholar 

  • Staahl BT, Tang J, Wu W, Sun A, Gitler AD, Yoo AS, Crabtree GR (2013) Kinetic analysis of npBAF to nBAF switching reveals exchange of SS18 with CREST and integration with neural developmental pathways. J Neurosci 33:10348–10361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi JK, Lickert H, Bisgrove BW, Sun X, Yamamoto M, Chawengsaksophak K, Hamada H, Yost HJ, Rossant J, Bruneau BG (2007) Baf60c is a nuclear Notch signaling component required for the establishment of left-right asymmetry. Proc Natl Acad Sci USA 104:846–851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tuoc TC, Boretius S, Sansom SN, Pitulescu ME, Frahm J, Livesey FJ, Stoykova A (2013a) Chromatin regulation by BAF170 controls cerebral cortical size and thickness. Dev Cell 25:256–269

    Article  CAS  PubMed  Google Scholar 

  • Tuoc TC, Narayanan R, Stoykova A (2013b) BAF chromatin remodeling complex: Cortical size regulation and beyond. Cell Cycle 12:2953–2959

    Article  CAS  PubMed  Google Scholar 

  • van Bokhoven H, Kramer JM (2010) Disruption of the epigenetic code: an emerging mechanism in mental retardation. Neurobiol Dis 39:3–12

    Article  PubMed  Google Scholar 

  • Vogel-Ciernia A, Matheos DP, Barrett RM, Kramar EA, Azzawi S, Chen Y, Magnan CN, Zeller M, Sylvain A, Haettig J et al (2013) The neuron-specific chromatin regulatory subunit BAF53b is necessary for synaptic plasticity and memory. Nat Neurosci 16:552–561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Tsai JW, LaMonica B, Kriegstein AR (2011) A new subtype of progenitor cell in the mouse embryonic neocortex. Nat Neurosci 14:555–561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weider M, Kuspert M, Bischof M, Vogl MR, Hornig J, Loy K, Kosian T, Muller J, Hillgartner S, Tamm ER et al (2012) Chromatin-remodeling factor Brg1 is required for Schwann cell differentiation and myelination. Dev Cell 23:193–201

    Article  CAS  PubMed  Google Scholar 

  • Wen S, Li H, Liu J (2009) Epigenetic background of neuronal fate determination. Prog Neurobiol 87:98–117

    Article  PubMed  Google Scholar 

  • Wu JI, Lessard J, Olave IA, Qiu Z, Ghosh A, Graef IA, Crabtree GR (2007) Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron 56:94–108

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Wang Z, Sharova L, Sharov AA, Ling C, Piao Y, Aiba K, Matoba R, Wang W, Ko MS (2008) BAF250B-associated SWI/SNF chromatin-remodeling complex is required to maintain undifferentiated mouse embryonic stem cells. Stem Cells 26:1155–1165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu Y, Chen Y, Kim B, Wang H, Zhao C, He X, Liu L, Liu W, Wu LM, Mao M et al (2013) Olig2 targets chromatin remodelers to enhancers to initiate oligodendrocyte differentiation. Cell 152:248–261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhan X, Shi X, Zhang Z, Chen Y, Wu JI (2011) Dual role of Brg chromatin remodeling factor in Sonic hedgehog signaling during neural development. Proc Natl Acad Sci USA 108:12758–12763

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We apologize to colleagues whose work we may not have been able to include in this review due to space limitation. We thank J. Staiger for his support and M. Ahmad and K. Shanmugarajan for proofreading of the manuscript. This work was supported by the University Medicine Göttingen (UMG) and DFG grant (TU 432/1-1). The authors declare no competing financial interests

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Cong Tuoc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narayanan, R., Tuoc, T.C. Roles of chromatin remodeling BAF complex in neural differentiation and reprogramming. Cell Tissue Res 356, 575–584 (2014). https://doi.org/10.1007/s00441-013-1791-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1791-7

Keywords

Navigation