Skip to main content

Advertisement

Log in

Novel mechanisms of tube-size regulation revealed by the Drosophila trachea

Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The size of various tubes within tubular organs such as the lung, vascular system and kidney must be finely tuned for the optimal delivery of gases, nutrients, waste and cells within the entire organism. Aberrant tube sizes lead to devastating human illnesses, such as polycystic kidney disease, fibrocystic breast disease, pancreatic cystic neoplasm and thyroid nodules. However, the underlying mechanisms that are responsible for tube-size regulation have yet to be fully understood. Therefore, no effective treatments are available for disorders caused by tube-size defects. Recently, the Drosophila tracheal system has emerged as an excellent in vivo model to explore the fundamental mechanisms of tube-size regulation. Here, we discuss the role of the apical luminal matrix, cell polarity and signaling pathways in regulating tube size in Drosophila trachea. Previous studies of the Drosophila tracheal system have provided general insights into epithelial tube morphogenesis. Mechanisms that regulate tube size in Drosophila trachea could be well conserved in mammalian tubular organs. This knowledge should greatly aid our understanding of tubular organogenesis in vertebrates and potentially lead to new avenues for the treatment of human disease caused by tube-size defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adler PN (2002) Planar signaling and morphogenesis in Drosophila. Dev Cell 2:525-535

    Article  PubMed  CAS  Google Scholar 

  • Adler PN (2012) The frizzled/stan pathway and planar cell polarity in the Drosophila wing. Curr Top Dev Biol 101:1–31

    Article  PubMed  Google Scholar 

  • Affolter M, Nellen D, Nussbaumer U, Basler K (1994) Multiple requirements for the receptor serine/threonine kinase thick veins reveal novel functions of TGF beta homologs during Drosophila embryogenesis. Development 120:3105–3117

    PubMed  CAS  Google Scholar 

  • Araujo SJ, Aslam H, Tear G, Casanova J (2005) Mummy/cystic encodes an enzyme required for chitin and glycan synthesis, involved in trachea, embryonic cuticle and CNS development—analysis of its role in Drosophila tracheal morphogenesis. Dev Biol 288:179–193

    Article  PubMed  CAS  Google Scholar 

  • Armbruster K, Luschnig S (2012) The Drosophila Sec7 domain guanine nucleotide exchange factor protein Gartenzwerg localizes at the cis-Golgi and is essential for epithelial tube expansion. J Cell Sci 125:1318–1328

    Article  PubMed  CAS  Google Scholar 

  • Aspenstrom P, Richnau N, Johansson AS (2006) The diaphanous-related formin DAAM1 collaborates with the Rho GTPases RhoA and Cdc42, CIP4 and Src in regulating cell morphogenesis and actin dynamics. Exp Cell Res 312:2180–2194

    Article  PubMed  Google Scholar 

  • Bagnat M, Cheung ID, Mostov KE, Stainier DY (2007) Genetic control of single lumen formation in the zebrafish gut. Nat Cell Biol 9:954–960

    Article  PubMed  CAS  Google Scholar 

  • Barbero P, Bittova L, Pfeffer SR (2002) Visualization of Rab9-mediated vesicle transport from endosomes to the trans-Golgi in living cells. J Cell Biol 156:511–518

    Article  PubMed  CAS  Google Scholar 

  • Bastock R, Strutt D (2007) The planar polarity pathway promotes coordinated cell migration during Drosophila oogenesis. Development 134:3055-3064

    Article  PubMed  CAS  Google Scholar 

  • Behr M, Riedel D, Schuh R (2003) The claudin-like megatrachea is essential in septate junctions for the epithelial barrier function in Drosophila. Dev Cell 5:611-620

    Article  PubMed  CAS  Google Scholar 

  • Beitel GJ, Krasnow MA (2000) Genetic control of epithelial tube size in the Drosophila tracheal system. Development 127:3271–3282

    PubMed  CAS  Google Scholar 

  • Blum Y, Belting HG, Ellertsdottir E, Herwig L, Luders F, Affolter M (2008) Complex cell rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo. Dev Biol 316:312–322

    Article  PubMed  CAS  Google Scholar 

  • Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116:153–166

    Article  PubMed  CAS  Google Scholar 

  • Bonifacino JS, Rojas R (2006) Retrograde transport from endosomes to the trans-Golgi network. Nat Rev Mol Cell Biol 7:568–579

    Article  PubMed  CAS  Google Scholar 

  • Chia PZ, Gasnereau I, Lieu ZZ, Gleeson PA (2011) Rab9-dependent retrograde transport and endosomal sorting of the endopeptidase furin. J Cell Sci 124:2401–2413

    Article  PubMed  CAS  Google Scholar 

  • Chihara T, Hayashi S (2000) Control of tracheal tubulogenesis by Wingless signaling. Development 127:4433–4442

    PubMed  CAS  Google Scholar 

  • Chung S, Vining MS, Bradley PL, Chan CC, Wharton KA Jr, Andrew DJ (2009) Serrano (sano) functions with the planar cell polarity genes to control tracheal tube length. PLoS Genet 5:e1000746

    Article  PubMed  Google Scholar 

  • Chung S, Chavez C, Andrew DJ (2011) Trachealess (Trh) regulates all tracheal genes during Drosophila embryogenesis. Dev Biol 360:160–172

    PubMed  CAS  Google Scholar 

  • Colas JF, Schoenwolf GC (2001) Towards a cellular and molecular understanding of neurulation. Dev Dyn 221:117–145

    Article  PubMed  CAS  Google Scholar 

  • Courbard JR, Djiane A, Wu J, Mlodzik M (2009) The apical/basal-polarity determinant Scribble cooperates with the PCP core factor Stbm/Vang and functions as one of its effectors. Dev Biol 333:67–77

    Article  PubMed  CAS  Google Scholar 

  • Davis GE, Stratman AN, Sacharidou A, Koh W (2011) Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting. Int Rev Cell Mol Biol 288:101–165

    Article  PubMed  CAS  Google Scholar 

  • de Celis JF, Llimargas M, Casanova J (1995) Ventral veinless, the gene encoding the Cf1a transcription factor, links positional information and cell differentiation during embryonic and imaginal development in Drosophila melanogaster. Development 121:3405–3416

    PubMed  Google Scholar 

  • Devine WP, Lubarsky B, Shaw K, Luschnig S, Messina L, Krasnow MA (2005) Requirement for chitin biosynthesis in epithelial tube morphogenesis. Proc Natl Acad Sci USA 102:17014–17019

    Article  PubMed  CAS  Google Scholar 

  • Djiane A, Yogev S, Mlodzik M (2005) The apical determinants aPKC and dPatj regulate Frizzled-dependent planar cell polarity in the Drosophila eye. Cell 121:621–631

    Article  PubMed  CAS  Google Scholar 

  • Dong B, Kakihara K, Otani T, Wada H, Hayashi S (2013) Rab9 and retromer regulate retrograde trafficking of luminal protein required for epithelial tube length control. Nat Commun 4:1358

    Article  PubMed  Google Scholar 

  • Folkman J, Haudenschild C (1980) Angiogenesis in vitro. Nature 288:551–556

    Article  PubMed  CAS  Google Scholar 

  • Forster D, Luschnig S (2012) Src42A-dependent polarized cell shape changes mediate epithelial tube elongation in Drosophila. Nat Cell Biol 14:526–534

    Article  PubMed  Google Scholar 

  • Forster D, Armbruster K, Luschnig S (2010) Sec24-dependent secretion drives cell-autonomous expansion of tracheal tubes in Drosophila. Curr Biol 20:62–68

    Article  PubMed  Google Scholar 

  • Garud SS, Willingham FF (2012) Molecular analysis of cyst fluid aspiration in the diagnosis and risk assessment of cystic lesions of the pancreas. Clin Transl Sci 5:102–107

    Article  PubMed  Google Scholar 

  • Gerke V, Creutz CE, Moss SE (2005) Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol 6:449–461

    Article  PubMed  CAS  Google Scholar 

  • Ghabrial A, Luschnig S, Metzstein MM, Krasnow MA (2003) Branching morphogenesis of the Drosophila tracheal system. Annu Rev Cell Dev Biol 19:623–647

    Article  PubMed  CAS  Google Scholar 

  • Grieder NC, Caussinus E, Parker DS, Cadigan K, Affolter M, Luschnig S (2008) gammaCOP is required for apical protein secretion and epithelial morphogenesis in Drosophila melanogaster. PLoS One 3:e3241

    Article  PubMed  Google Scholar 

  • He B, Guo W (2009) The exocyst complex in polarized exocytosis. Curr Opin Cell Biol 21:537–542

    Article  PubMed  CAS  Google Scholar 

  • Isaac DD, Andrew DJ (1996) Tubulogenesis in Drosophila: a requirement for the trachealess gene product. Genes Dev 10:103–117

    Article  PubMed  CAS  Google Scholar 

  • Jacob R, Heine M, Eikemeyer J, Frerker N, Zimmer KP, Rescher U, Gerke V, Naim HY (2004) Annexin II is required for apical transport in polarized epithelial cells. J Biol Chem 279:3680–3684

    Article  PubMed  CAS  Google Scholar 

  • Jayaram SA, Senti KA, Tiklova K, Tsarouhas V, Hemphala J, Samakovlis C (2008) COPI vesicle transport is a common requirement for tube expansion in Drosophila. PLoS One 3:e1964

    Article  PubMed  Google Scholar 

  • Jazwinska A, Affolter M (2004) A family of genes encoding zona pellucida (ZP) domain proteins is expressed in various epithelial tissues during Drosophila embryogenesis. Gene Expr Patterns 4:413–421

    Article  PubMed  CAS  Google Scholar 

  • Jenny A (2010) Planar cell polarity signaling in the Drosophila eye. Curr Top Dev Biol 93:189–227

    Article  PubMed  Google Scholar 

  • Jeon M, Zinn K (2009) Receptor tyrosine phosphatases control tracheal tube geometries through negative regulation of EGFR signaling. Development 136:3121–3129

    Article  PubMed  CAS  Google Scholar 

  • Jeon M, Scott MP, Zinn K (2012) Interactions between Type III receptor tyrosine phosphatases and growth factor receptor tyrosine kinases regulate tracheal tube formation in Drosophila. Biol Open 1:548–558

    Article  PubMed  CAS  Google Scholar 

  • Jiang L, Crews ST (2006) Dysfusion transcriptional control of Drosophila tracheal migration, adhesion, and fusion. Mol Cell Biol 26:6547–6556

    Article  PubMed  CAS  Google Scholar 

  • Jiang L, Rogers SL, Crews ST (2007) The Drosophila Dead end Arf-like3 GTPase controls vesicle trafficking during tracheal fusion cell morphogenesis. Dev Biol 311:487–499

    Article  PubMed  CAS  Google Scholar 

  • Johannes L, Popoff V (2008) Tracing the retrograde route in protein trafficking. Cell 135:1175–1187

    Article  PubMed  CAS  Google Scholar 

  • Johnson KG, Van Vactor D (2003) Receptor protein tyrosine phosphatases in nervous system development. Physiol Rev 83:1–24

    PubMed  CAS  Google Scholar 

  • Kamei M, Saunders WB, Bayless KJ, Dye L, Davis GE, Weinstein BM (2006) Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442:453–456

    Article  PubMed  CAS  Google Scholar 

  • Kato S, Sekine K (1999) FGF-FGFR signaling in vertebrate organogenesis. Cell Mol Biol (Noisy-le-grand) 45:631–638

    CAS  Google Scholar 

  • Klein TJ, Mlodzik M (2005) Planar cell polarization: an emerging model points in the right direction. Annu Rev Cell Dev Biol 21:155-176

    Article  PubMed  CAS  Google Scholar 

  • Laprise P, Tepass U (2011) Novel insights into epithelial polarity proteins in Drosophila. Trends Cell Biol 21:401-408

    Article  PubMed  CAS  Google Scholar 

  • Laprise P, Paul SM, Boulanger J, Robbins RM, Beitel GJ, Tepass U (2010) Epithelial polarity proteins regulate Drosophila tracheal tube size in parallel to the luminal matrix pathway. Curr Biol 20:55-61

    Article  PubMed  CAS  Google Scholar 

  • Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248:307–318

    Article  PubMed  CAS  Google Scholar 

  • Lebeche D, Malpel S, Cardoso WV (1999) Fibroblast growth factor interactions in the developing lung. Mech Dev 86:125–136

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Kolodziej PA (2002) The plakin Short Stop and the RhoA GTPase are required for E-cadherin-dependent apical surface remodeling during tracheal tube fusion. Development 129:1509–1520

    Article  PubMed  CAS  Google Scholar 

  • Levi BP, Ghabrial AS, Krasnow MA (2006) Drosophila talin and integrin genes are required for maintenance of tracheal terminal branches and luminal organization. Development 133:2383–2393

    Article  PubMed  CAS  Google Scholar 

  • Li J, Li W, Calhoun HC, Xia F, Gao FB, Li WX (2003) Patterns and functions of STAT activation during Drosophila embryogenesis. Mech Dev 120:1455–1468

    Article  PubMed  CAS  Google Scholar 

  • Llimargas M (2000) Wingless and its signalling pathway have common and separable functions during tracheal development. Development 127:4407–4417

    PubMed  CAS  Google Scholar 

  • Llimargas M, Casanova J (1999) EGF signalling regulates cell invagination as well as cell migration during formation of tracheal system in Drosophila. Dev Genes Evol 209:174–179

    Article  PubMed  CAS  Google Scholar 

  • Llimargas M, Strigini M, Katidou M, Karagogeos D, Casanova J (2004) Lachesin is a component of a septate junction-based mechanism that controls tube size and epithelial integrity in the Drosophila tracheal system. Development 131:181-190

    Article  PubMed  CAS  Google Scholar 

  • Lombardi D, Soldati T, Riederer MA, Goda Y, Zerial M, Pfeffer SR (1993) Rab9 functions in transport between late endosomes and the trans Golgi network. EMBO J 12:677–682

    PubMed  CAS  Google Scholar 

  • Luschnig S, Batz T, Armbruster K, Krasnow MA (2006) Serpentine and vermiform encode matrix proteins with chitin binding and deacetylation domains that limit tracheal tube length in Drosophila. Curr Biol 16:186–194

    Article  PubMed  CAS  Google Scholar 

  • Massarwa R, Schejter ED, Shilo BZ (2009) Apical secretion in epithelial tubes of the Drosophila embryo is directed by the Formin-family protein Diaphanous. Dev Cell 16:877–888

    Article  PubMed  CAS  Google Scholar 

  • Matsuyama M, Aizawa S, Shimono A (2009) Sfrp controls apicobasal polarity and oriented cell division in developing gut epithelium. PLoS Genet 5:e1000427

    Article  PubMed  Google Scholar 

  • Mellman I, Nelson WJ (2008) Coordinated protein sorting, targeting and distribution in polarized cells. Nat Rev Mol Cell Biol 9:833–845

    Article  PubMed  CAS  Google Scholar 

  • Morrison DK, Murakami MS, Cleghon V (2000) Protein kinases and phosphatases in the Drosophila genome. J Cell Biol 150:F57–F62

    Article  PubMed  CAS  Google Scholar 

  • Moussian B, Tang E, Tonning A, Helms S, Schwarz H, Nusslein-Volhard C, Uv AE (2006) Drosophila Knickkopf and Retroactive are needed for epithelial tube growth and cuticle differentiation through their specific requirement for chitin filament organization. Development 133:163–171

    Article  PubMed  CAS  Google Scholar 

  • Moyer KE, Jacobs JR (2008) Varicose: a MAGUK required for the maturation and function of Drosophila septate junctions. BMC Dev Biol 8:99

    Article  PubMed  Google Scholar 

  • Musch A, Cohen D, Yeaman C, Nelson WJ, Rodriguez-Boulan E, Brennwald PJ (2002) Mammalian homolog of Drosophila tumor suppressor lethal (2) giant larvae interacts with basolateral exocytic machinery in Madin-Darby canine kidney cells. Mol Biol Cell 13:158–168

    Article  PubMed  CAS  Google Scholar 

  • Myat MM, Lightfoot H, Wang P, Andrew DJ (2005) A molecular link between FGF and Dpp signaling in branch-specific migration of the Drosophila trachea. Dev Biol 281:38–52

    Article  PubMed  CAS  Google Scholar 

  • Nelson KS, Khan Z, Molnar I, Mihaly J, Kaschube M, Beitel GJ (2012) Drosophila Src regulates anisotropic apical surface growth to control epithelial tube size. Nat Cell Biol 14:518–525

    Article  PubMed  CAS  Google Scholar 

  • Norum M, Tang E, Chavoshi T, Schwarz H, Linke D, Uv A, Moussian B (2010) Trafficking through COPII stabilises cell polarity and drives secretion during Drosophila epidermal differentiation. PLoS One 5:e10802

    Article  PubMed  Google Scholar 

  • Paul SM, Ternet M, Salvaterra PM, Beitel GJ (2003) The Na+/K+ ATPase is required for septate junction function and epithelial tube-size control in the Drosophila tracheal system. Development 130:4963-4974

    Article  PubMed  CAS  Google Scholar 

  • Popoveniuc G, Jonklaas J (2012) Thyroid nodules. Med Clin North Am 96:329–349

    Article  PubMed  CAS  Google Scholar 

  • Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, Oude Egbrink MG (2007) The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 454:345–359

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro C, Neumann M, Affolter M (2004) Genetic control of cell intercalation during tracheal morphogenesis in Drosophila. Curr Biol 14:2197–2207

    Article  PubMed  CAS  Google Scholar 

  • Rinaldi P, Ierardi C, Costantini M, Magno S, Giuliani M, Belli P, Bonomo L (2010) Cystic breast lesions: sonographic findings and clinical management. J Ultrasound Med 29:1617–1626

    PubMed  Google Scholar 

  • Saburi S, Hester I, Fischer E, Pontoglio M, Eremina V, Gessler M, Quaggin SE, Harrison R, Mount R, McNeill H (2008) Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease. Nat Genet 40:1010-1015

    Article  PubMed  CAS  Google Scholar 

  • Samakovlis C, Hacohen N, Manning G, Sutherland D, Guillemin K, Krasnow MA (1996) Development of the Drosophila tracheal system occurs by a series of morphologically distinct but genetically coupled branching events. Development 122:1395–1407

    PubMed  CAS  Google Scholar 

  • Schottenfeld-Roames J, Ghabrial AS (2012) Whacked and Rab35 polarize dynein-motor-complex-dependent seamless tube growth. Nat Cell Biol 14:386–393

    Article  PubMed  CAS  Google Scholar 

  • Seifert JR, Mlodzik M (2007) Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nat Rev Genet 8:126-138

    Article  PubMed  CAS  Google Scholar 

  • Shaye DD, Casanova J, Llimargas M (2008) Modulation of intracellular trafficking regulates cell intercalation in the Drosophila trachea. Nat Cell Biol 10:964–970

    Article  PubMed  CAS  Google Scholar 

  • Sotillos S, Espinosa-Vazquez JM, Foglia F, Hu N, Hombria JC (2010) An efficient approach to isolate STAT regulated enhancers uncovers STAT92E fundamental role in Drosophila tracheal development. Dev Biol 340:571–582

    Article  PubMed  CAS  Google Scholar 

  • Steinman TI (2012) Polycystic kidney disease: a 2011 update. Curr Opin Nephrol Hypertens 21:189–194

    Article  PubMed  CAS  Google Scholar 

  • Sternlicht MD, Kouros-Mehr H, Lu P, Werb Z (2006) Hormonal and local control of mammary branching morphogenesis. Differentiation 74:365–381

    Article  PubMed  CAS  Google Scholar 

  • Strilic B, Kucera T, Eglinger J, Hughes MR, McNagny KM, Tsukita S, Dejana E, Ferrara N, Lammert E (2009) The molecular basis of vascular lumen formation in the developing mouse aorta. Dev Cell 17:505–515

    Article  PubMed  CAS  Google Scholar 

  • Strutt DI, Weber U, Mlodzik M (1997) The role of RhoA in tissue polarity and Frizzled signalling. Nature 387:292-295

    Article  PubMed  CAS  Google Scholar 

  • Sutherland D, Samakovlis C, Krasnow MA (1996) Branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell 87:1091–1101

    Article  PubMed  CAS  Google Scholar 

  • Swanson LE, Beitel GJ (2006) Tubulogenesis: an inside job. Curr Biol 16:R51–R53

    Article  PubMed  CAS  Google Scholar 

  • Tanaka-Matakatsu M, Uemura T, Oda H, Takeichi M, Hayashi S (1996) Cadherin-mediated cell adhesion and cell motility in Drosophila trachea regulated by the transcription factor Escargot. Development 122:3697–705

    PubMed  CAS  Google Scholar 

  • Tepass U, Tanentzapf G, Ward R, Fehon R (2001) Epithelial cell polarity and cell junctions in Drosophila. Annu Rev Genet 35:747–784

    Article  PubMed  CAS  Google Scholar 

  • Thomas SM, Brugge JS (1997) Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 13:513–609

    Article  PubMed  CAS  Google Scholar 

  • Tonning A, Hemphala J, Tang E, Nannmark U, Samakovlis C, Uv A (2005) A transient luminal chitinous matrix is required to model epithelial tube diameter in the Drosophila trachea. Dev Cell 9:423–430

    Article  PubMed  CAS  Google Scholar 

  • Tsarouhas V, Senti KA, Jayaram SA, Tiklova K, Hemphala J, Adler J, Samakovlis C (2007) Sequential pulses of apical epithelial secretion and endocytosis drive airway maturation in Drosophila. Dev Cell 13:214–225

    Article  PubMed  CAS  Google Scholar 

  • Vincent S, Ruberte E, Grieder NC, Chen CK, Haerry T, Schuh R, Affolter M (1997) DPP controls tracheal cell migration along the dorsoventral body axis of the Drosophila embryo. Development 124:2741–2750

    PubMed  CAS  Google Scholar 

  • Wang S, Jayaram SA, Hemphala J, Senti KA, Tsarouhas V, Jin H, Samakovlis C (2006) Septate-junction-dependent luminal deposition of chitin deacetylases restricts tube elongation in the Drosophila trachea. Curr Biol 16:180–185

    Article  PubMed  Google Scholar 

  • Wickner W, Schekman R (2008) Membrane fusion. Nat Struct Mol Biol 15:658–664

    Article  PubMed  CAS  Google Scholar 

  • Wilk R, Weizman I, Glazer L, Shilo B (1996) Trachealess encodes a bHLH-PAS protein and is a master regulator gene in the Drosophila tracheal system. Genes Dev 10:93–102

    Article  PubMed  CAS  Google Scholar 

  • Wingen C, Aschenbrenner AC, Stumpges B, Hoch M, Behr M (2009) The Wurst protein: a novel endocytosis regulator involved in airway clearance and respiratory tube size control. Cell Adh Migr 3:14–18

    Article  PubMed  Google Scholar 

  • Wu VM, Beitel GJ (2004) A junctional problem of apical proportions: epithelial tube-size control by septate junctions in the Drosophila tracheal system. Curr Opin Cell Biol 16:493-499

    Article  PubMed  CAS  Google Scholar 

  • Wu VM, Schulte J, Hirschi A, Tepass U, Beitel GJ (2004) Sinuous is a Drosophila claudin required for septate junction organization and epithelial tube size control. J Cell Biol 164:313-323

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the assistance of Joseph McDermott and William Roberts during manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Jiang.

Additional information

Li Zuo and Ekaterini Iordanou contributed equally to the work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuo, L., Iordanou, E., Chandran, R.R. et al. Novel mechanisms of tube-size regulation revealed by the Drosophila trachea. Cell Tissue Res 354, 343–354 (2013). https://doi.org/10.1007/s00441-013-1673-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1673-z

Keywords

Navigation