Skip to main content
Log in

p53-dependent pathways in neurite outgrowth and axonal regeneration

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The tumor suppressor p53 is a multifunctional sensor of a number of cellular signals and pathways essential for cell biology, including DNA damage, cell cycle regulation, apoptosis, angiogenesis and cell metabolism. In the last few years, a novel role for p53 in neurobiology has emerged, which includes a role in the regulation of neurite outgrowth and axonal regeneration. p53 integrates a number of extracellular signals that involve neurotrophins and axon guidance cues to modulate the cytoskeletal response associated with neurite outgrowth at both the transcriptional and post-translational level. Here, we review our current knowledge of this topic and speculate about future research directions that involve p53 and related molecular pathways and that might advance our understanding of neurite outgrowth and axonal regeneration at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Alexandrova A, Ivanov A, Chumakov P, Kopnin B, Vasiliev J (2000) Changes in p53 expression in mouse fibroblasts can modify motility and extracellular matrix organization. Oncogene 19:5826–5830

    Article  PubMed  CAS  Google Scholar 

  • Arakawa H (2005) p53, apoptosis and axon-guidance molecules. Cell Death Differ 12:1057–1065

    Article  PubMed  CAS  Google Scholar 

  • Armesilla-Diaz A, Bragado P, Del Valle I, Cuevas E, Lazaro I, Martin C, Cigudosa JC, Silva A (2008) p53 regulates the self-renewal and differentiation of neural precursors. Neuroscience 158:1378–1389

    Article  PubMed  Google Scholar 

  • Armstrong JF, Kaufman MH, Harrison DJ, Clarke AR (1995) High-frequency developmental abnormalities in p53-deficient mice. Curr Biol 5:931–936

    Article  PubMed  CAS  Google Scholar 

  • Avantaggiati ML, Ogryzko V, Gardner K, Giordano A, Levine AS, Kelly K (1997) Recruitment of p300/CBP in p53-dependent signal pathways. Cell 89:1175–1184

    Article  PubMed  CAS  Google Scholar 

  • Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM, vanTuinen P, Ledbetter DH, Barker DF, Nakamura Y, White R, Vogelstein B (1989) Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244:217–221

    Article  PubMed  CAS  Google Scholar 

  • Brynczka C, Merrick BA (2008) The p53 transcriptional target gene wnt7b contributes to NGF-inducible neurite outgrowth in neuronal PC12 cells. Differentiation 76:795–808

    Article  PubMed  CAS  Google Scholar 

  • Brynczka C, Labhart P, Merrick BA (2007) NGF-mediated transcriptional targets of p53 in PC12 neuronal differentiation. BMC Genomics 8:139

    Article  PubMed  Google Scholar 

  • Cafferty WB, Gardiner NJ, Gavazzi I, Powell J, McMahon SB, Heath JK, Munson J, Cohen J, Thompson SW (2001) Leukemia inhibitory factor determines the growth status of injured adult sensory neurons. J Neurosci 21:7161–7170

    PubMed  CAS  Google Scholar 

  • Cafferty WB, Gardiner NJ, Das P, Qiu J, McMahon SB, Thompson SW (2004) Conditioning injury-induced spinal axon regeneration fails in interleukin-6 knock-out mice. J Neurosci 24:4432–4443

    Article  PubMed  CAS  Google Scholar 

  • Canon E, Cosgaya JM, Scsucova S, Aranda A (2004) Rapid effects of retinoic acid on CREB and ERK phosphorylation in neuronal cells. Mol Biol Cell 15:5583–5592

    Article  PubMed  CAS  Google Scholar 

  • Chambon P (1996) A decade of molecular biology of retinoic acid receptors. FASEB J 10:940–954

    PubMed  CAS  Google Scholar 

  • Chen D, Kon N, Li M, Zhang W, Qin J, Gu W (2005) ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 121:1071–1083

    Article  PubMed  CAS  Google Scholar 

  • Coutts AS, Adams CJ, La Thangue NB (2009a) p53 ubiquitination by Mdm2: a never ending tail? DNA Repair (Amst) 8:483–490

    Article  CAS  Google Scholar 

  • Coutts AS, Weston L, La Thangue NB (2009b) A transcription co-factor integrates cell adhesion and motility with the p53 response. Proc Natl Acad Sci USA 106:19872–19877

    PubMed  CAS  Google Scholar 

  • Croft DR, Crighton D, Samuel MS, Lourenco FC, Munro J, Wood J, Bensaad K, Vousden KH, Sansom OJ, Ryan KM, Olson MF (2011) p53-mediated transcriptional regulation and activation of the actin cytoskeleton regulatory RhoC to LIMK2 signaling pathway promotes cell survival. Cell Res 21:666–682

    Article  PubMed  CAS  Google Scholar 

  • Das S, Boswell SA, Aaronson SA, Lee SW (2008) P53 promoter selection: choosing between life and death. Cell Cycle 7:154–157

    Article  PubMed  CAS  Google Scholar 

  • Delcuve GP, Rastegar M, Davie JR (2009) Epigenetic control. J Cell Physiol 219:243–250

    Article  PubMed  CAS  Google Scholar 

  • Di Giovanni S, Knights CD, Rao M, Yakovlev A, Beers J, Catania J, Avantaggiati ML, Faden AI (2006) The tumor suppressor protein p53 is required for neurite outgrowth and axon regeneration. EMBO J 25:4084–4096

    Article  Google Scholar 

  • Dornan D, Wertz I, Shimizu H, Arnott D, Frantz GD, Dowd P, O'Rourke K, Koeppen H, Dixit VM (2004) The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429:86–92

    Article  PubMed  CAS  Google Scholar 

  • Dziennis S, Alkayed NJ (2008) Role of signal transducer and activator of transcription 3 in neuronal survival and regeneration. Rev Neurosci 19:341–361

    Article  PubMed  CAS  Google Scholar 

  • Eizenberg O, Faber-Elman A, Gottlieb E, Oren M, Rotter V, Schwartz M (1996) p53 plays a regulatory role in differentiation and apoptosis of central nervous system-associated cells. Mol Cell Biol 16:5178–5185

    PubMed  CAS  Google Scholar 

  • el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B (1992) Definition of a consensus binding site for p53. Nat Genet 1:45–49

    Article  PubMed  CAS  Google Scholar 

  • Endo M, Ohashi K, Mizuno K (2007) LIM kinase and slingshot are critical for neurite extension. J Biol Chem 282:13692–13702

    Article  PubMed  CAS  Google Scholar 

  • Firat-Karalar EN, Hsiue PP, Welch MD (2011) The actin nucleation factor JMY is a negative regulator of neuritogenesis. Mol Biol Cell (in press)

  • Fischer D, Petkova V, Thanos S, Benowitz LI (2004) Switching mature retinal ganglion cells to a robust growth state in vivo: gene expression and synergy with RhoA inactivation. J Neurosci 24:8726–8740

    Article  PubMed  CAS  Google Scholar 

  • Floriddia E, Nguyen T, Di Giovanni S (2011) Chromatin immunoprecipitation from dorsal root ganglia tissue following axonal injury. J Vis Exp 2011:2803

    Google Scholar 

  • Gaub P, Tedeschi A, Puttagunta R, Nguyen T, Schmandke A, Di Giovanni S (2010) HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death Differ 17:1392–1408

    Article  PubMed  CAS  Google Scholar 

  • Gaub P, Joshi Y, Wuttke A, Naumann U, Schnichels S, Heiduschka P, Di Giovanni S (2011) The histone acetyltransferase p300 promotes intrinsic axonal regeneration. Brain 134:2134–2148

    Article  PubMed  Google Scholar 

  • Gil-Perotin S, Marin-Husstege M, Li J, Soriano-Navarro M, Zindy F, Roussel MF, Garcia-Verdugo JM, Casaccia-Bonnefil P (2006) Loss of p53 induces changes in the behavior of subventricular zone cells: implication for the genesis of glial tumors. J Neurosci 26:1107–1116

    Article  PubMed  CAS  Google Scholar 

  • Glozak MA, Sengupta N, Zhang X, Seto E (2005) Acetylation and deacetylation of non-histone proteins. Gene 363:15–23

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb E, Haffner R, King A, Asher G, Gruss P, Lonai P, Oren M (1997) Transgenic mouse model for studying the transcriptional activity of the p53 protein: age- and tissue-dependent changes in radiation-induced activation during embryogenesis. EMBO J 16:1381–1390

    Article  PubMed  CAS  Google Scholar 

  • Harms K, Nozell S, Chen X (2004) The common and distinct target genes of the p53 family transcription factors. Cell Mol Life Sci 61:822–842

    Article  PubMed  CAS  Google Scholar 

  • Hsieh SH, Ferraro GB, Fournier AE (2006) Myelin-associated inhibitors regulate cofilin phosphorylation and neuronal inhibition through LIM kinase and Slingshot phosphatase. J Neurosci 26:1006–1015

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Gollapudi L, Sladek TL, Neet KE (2000) Mediation of nerve growth factor-driven cell cycle arrest in PC12 cells by p53. Simultaneous differentiation and proliferation subsequent to p53 functional inactivation. J Biol Chem 275:37829–37837

    Article  PubMed  CAS  Google Scholar 

  • Knights CD, Catania J, Di Giovanni S, Muratoglu S, Perez R, Swartzbeck A, Quong AA, Zhang X, Beerman T, Pestell RG, Avantaggiati ML (2006) Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J Cell Biol 173:533–544

    Article  PubMed  CAS  Google Scholar 

  • Komarova EA, Chernov MV, Franks R, Wang K, Armin G, Zelnick CR, Chin DM, Bacus SS, Stark GR, Gudkov AV (1997) Transgenic mice with p53-responsive lacZ: p53 activity varies dramatically during normal development and determines radiation and drug sensitivity in vivo. EMBO J 16:1391–1400

    Article  PubMed  CAS  Google Scholar 

  • Lane MA, Bailey SJ (2005) Role of retinoid signalling in the adult brain. Prog Neurobiol 75:275–293

    Article  PubMed  CAS  Google Scholar 

  • Lavin MF, Gueven N (2006) The complexity of p53 stabilization and activation. Cell Death Differ 13:941–950

    Article  PubMed  CAS  Google Scholar 

  • Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S, Parant JM, Lozano G, Hakem R, Benchimol S (2003) Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112:779–791

    Article  PubMed  CAS  Google Scholar 

  • Levy DE, Darnell JE Jr (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3:651–662

    Article  PubMed  CAS  Google Scholar 

  • Lill NL, Grossman SR, Ginsberg D, DeCaprio J, Livingston DM (1997) Binding and modulation of p53 by p300/CBP coactivators. Nature 387:823–827

    Article  PubMed  CAS  Google Scholar 

  • Lin J, Tang H, Jin X, Jia G, Hsieh JT (2002) p53 regulates Stat3 phosphorylation and DNA binding activity in human prostate cancer cells expressing constitutively active Stat3. Oncogene 21:3082–3088

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD, Berger SL (1999) p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol 19:1202–1209

    PubMed  CAS  Google Scholar 

  • Luo J, Li M, Tang Y, Laszkowska M, Roeder RG, Gu W (2004) Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc Natl Acad Sci USA 101:2259–2264

    Article  PubMed  CAS  Google Scholar 

  • Ma X, Fei E, Fu C, Ren H, Wang G (2011) Dysbindin-1, a schizophrenia-related protein, facilitates neurite outgrowth by promoting the transcriptional activity of p53. Mol Psychiatry 16:1105–1116

    Article  Google Scholar 

  • Maden M (2001) Role and distribution of retinoic acid during CNS development. Int Rev Cytol 209:1–77

    Article  PubMed  CAS  Google Scholar 

  • Marine JC, Jochemsen AG (2005) Mdmx as an essential regulator of p53 activity. Biochem Biophys Res Commun 331:750–760

    Article  PubMed  CAS  Google Scholar 

  • Meletis K, Wirta V, Hede SM, Nister M, Lundeberg J, Frisen J (2006) p53 suppresses the self-renewal of adult neural stem cells. Development 133:363–369

    Article  PubMed  CAS  Google Scholar 

  • Montano X (1997) P53 associates with trk tyrosine kinase. Oncogene 15:245–256

    Article  PubMed  CAS  Google Scholar 

  • Moore DL, Goldberg JL (2011) Multiple transcription factor families regulate axon growth and regeneration. Dev Neurobiol 71:1186–1211

    Article  PubMed  CAS  Google Scholar 

  • Moore DL, Blackmore MG, Hu Y, Kaestner KH, Bixby JL, Lemmon VP, Goldberg JL (2009) KLF family members regulate intrinsic axon regeneration ability. Science 326:298–301

    Article  PubMed  CAS  Google Scholar 

  • Murray-Zmijewski F, Slee EA, Lu X (2008) A complex barcode underlies the heterogeneous response of p53 to stress. Nat Rev Mol Cell Biol 9:702–712

    Article  PubMed  CAS  Google Scholar 

  • Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y (1996) The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959

    Article  PubMed  CAS  Google Scholar 

  • Olsson A, Manzl C, Strasser A, Villunger A (2007) How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression? Cell Death Differ 14:1561–1575

    Article  PubMed  CAS  Google Scholar 

  • Patapoutian A, Reichardt LF (2001) Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol 11:272–280

    Article  PubMed  CAS  Google Scholar 

  • Paulson M, Pisharody S, Pan L, Guadagno S, Mui AL, Levy DE (1999) Stat protein transactivation domains recruit p300/CBP through widely divergent sequences. J Biol Chem 274:25343–25349

    Article  PubMed  CAS  Google Scholar 

  • Poluha W, Schonhoff CM, Harrington KS, Lachyankar MB, Crosbie NE, Bulseco DA, Ross AH (1997) A novel, nerve growth factor-activated pathway involving nitric oxide, p53, and p21WAF1 regulates neuronal differentiation of PC12 cells. J Biol Chem 272:24002–24007

    Article  PubMed  CAS  Google Scholar 

  • Poongodi GL, Suresh N, Gopinath SC, Chang T, Inoue S, Inoue Y (2002) Dynamic change of neural cell adhesion molecule polysialylation on human neuroblastoma (IMR-32) and rat pheochromocytoma (PC-12) cells during growth and differentiation. J Biol Chem 277:28200–28211

    Article  PubMed  CAS  Google Scholar 

  • Qin Q, Baudry M, Liao G, Noniyev A, Galeano J, Bi X (2009) A novel function for p53: regulation of growth cone motility through interaction with Rho kinase. J Neurosci 29:5183–5192

    Article  PubMed  CAS  Google Scholar 

  • Qin Q, Liao G, Baudry M, Bi X (2010) Role of calpain-mediated p53 truncation in semaphorin 3A-induced axonal growth regulation. Proc Natl Acad Sci USA 107:13883–13887

    Article  PubMed  CAS  Google Scholar 

  • Qiu J, Cafferty WB, McMahon SB, Thompson SW (2005) Conditioning injury-induced spinal axon regeneration requires signal transducer and activator of transcription 3 activation. J Neurosci 25:1645–1653

    Article  PubMed  CAS  Google Scholar 

  • Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9:402–412

    Article  PubMed  CAS  Google Scholar 

  • Rowland BD, Peeper DS (2006) KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer 6:11–23

    Article  PubMed  CAS  Google Scholar 

  • Rowland BD, Bernards R, Peeper DS (2005) The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol 7:1074–1082

    Article  PubMed  CAS  Google Scholar 

  • Sah VP, Attardi LD, Mulligan GJ, Williams BO, Bronson RT, Jacks T (1995) A subset of p53-deficient embryos exhibit exencephaly. Nat Genet 10:175–180

    Article  PubMed  CAS  Google Scholar 

  • Schwaiger FW, Hager G, Schmitt AB, Horvat A, Streif R, Spitzer C, Gamal S, Breuer S, Brook GA, Nacimiento W, Kreutzberg GW (2000) Peripheral but not central axotomy induces changes in Janus kinases (JAK) and signal transducers and activators of transcription (STAT). Eur J Neurosci 12:1165–1176

    Article  PubMed  CAS  Google Scholar 

  • Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, Lane WS, McMahon SB (2006) Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell 24:841–851

    Article  PubMed  CAS  Google Scholar 

  • Tang Y, Luo J, Zhang W, Gu W (2006) Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 24:827–839

    Article  PubMed  CAS  Google Scholar 

  • Tedeschi A, Di Giovanni S (2009) The non-apoptotic role of p53 in neuronal biology: enlightening the dark side of the moon. EMBO Rep 10:576–583

    Article  PubMed  CAS  Google Scholar 

  • Tedeschi A, Nguyen T, Puttagunta R, Gaub P, Di Giovanni S (2009a) A p53-CBP/p300 transcription module is required for GAP-43 expression, axon outgrowth, and regeneration. Cell Death Differ 16:543–554

    Article  PubMed  CAS  Google Scholar 

  • Tedeschi A, Nguyen T, Steele SU, Feil S, Naumann U, Feil R, Di Giovanni S (2009b) The tumor suppressor p53 transcriptionally regulates cGKI expression during neuronal maturation and is required for cGMP-dependent growth cone collapse. J Neurosci 29:15155–15160

    Article  PubMed  CAS  Google Scholar 

  • Vassilev A, Yamauchi J, Kotani T, Prives C, Avantaggiati ML, Qin J, Nakatani Y (1998) The 400 kDa subunit of the PCAF histone acetylase complex belongs to the ATM superfamily. Mol Cell 2:869–875

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Cherukuri P, Luo J (2005) Activation of Stat3 sequence-specific DNA binding and transcription by p300/CREB-binding protein-mediated acetylation. J Biol Chem 280:11528–11534

    Article  PubMed  CAS  Google Scholar 

  • Wesierska-Gadek J, Schmid G (2005) The subcellular distribution of the p53 tumour suppressor, and organismal ageing. Cell Mol Biol Lett 10:439–453

    PubMed  CAS  Google Scholar 

  • Wong K, Zhang J, Awasthi S, Sharma A, Rogers L, Matlock EF, Van Lint C, Karpova T, McNally J, Harrod R (2004) Nerve growth factor receptor signaling induces histone acetyltransferase domain-dependent nuclear translocation of p300/CREB-binding protein-associated factor and hGCN5 acetyltransferases. J Biol Chem 279:55667–55674

    Article  PubMed  CAS  Google Scholar 

  • Wong LF, Yip PK, Battaglia A, Grist J, Corcoran J, Maden M, Azzouz M, Kingsman SM, Kingsman AJ, Mazarakis ND, McMahon SB (2006) Retinoic acid receptor beta2 promotes functional regeneration of sensory axons in the spinal cord. Nat Neurosci 9:243–250

    Article  PubMed  CAS  Google Scholar 

  • Xu Y (2003) Regulation of p53 responses by post-translational modifications. Cell Death Differ 10:400–403

    Article  PubMed  CAS  Google Scholar 

  • Yip PK, Wong LF, Pattinson D, Battaglia A, Grist J, Bradbury EJ, Maden M, McMahon SB, Mazarakis ND (2006) Lentiviral vector expressing retinoic acid receptor beta2 promotes recovery of function after corticospinal tract injury in the adult rat spinal cord. Hum Mol Genet 15:3107–3118

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Yan W, Chen X (2006) p53 is required for nerve growth factor-mediated differentiation of PC12 cells via regulation of TrkA levels. Cell Death Differ 13:2118–2128

    Article  PubMed  CAS  Google Scholar 

  • Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ, Chen AJ, Perry SR, Tonon G, Chu GC, Ding Z, Stommel JM, Dunn KL, Wiedemeyer R, You MJ, Brennan C, Wang YA, Ligon KL, Wong WH, Chin L, DePinho RA (2008) p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455:1129–1133

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Mao XO, Sun Y, Xia Z, Greenberg DA (2002) p38 Mitogen-activated protein kinase mediates hypoxic regulation of Mdm2 and p53 in neurons. J Biol Chem 277:22909–22914

    Article  PubMed  CAS  Google Scholar 

  • Zuchero JB, Coutts AS, Quinlan ME, Thangue NB, Mullins RD (2009) p53-cofactor JMY is a multifunctional actin nucleation factor. Nat Cell Biol 11:451–459

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Sanam Vakil for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Di Giovanni.

Additional information

The authors are grateful to the following funding agencies: Wings For Life, DFG and the Hertie Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Giovanni, S., Rathore, K. p53-dependent pathways in neurite outgrowth and axonal regeneration. Cell Tissue Res 349, 87–95 (2012). https://doi.org/10.1007/s00441-011-1292-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-011-1292-5

Keywords

Navigation