Skip to main content
Log in

Comparison of the osteogenic potentials of autologous cultured osteoblasts and mesenchymal stem cells loaded onto allogeneic cancellous bone granules

Cell and Tissue Research Aims and scope Submit manuscript

Abstract

We compared the bone regeneration potentials of autologous cultured osteoblasts and of bone-marrow-derived autologous MSCs in combination with allogeneic cancellous bone granules in a rabbit radial defect model. Radial shaft defects over 15 mm were made in 26 New Zealand white rabbits. The animals underwent insertion of allogeneic cancellous bone granules containing autologous osteoblasts into right-side defects (the experimental group) and of allogeneic cancellous bone granules with autologous MSCs into left-side defects (the control group). To quantitatively assess bone regeneration, radiographic evaluations as well as BMD and BMC measurements were performed 3, 6, 9 and 12 weeks post-implantation and histology as well as micro-CT image analysis were performed at 6 and 12 weeks. Radiographic evaluations 3 weeks post-implantation showed that the experimental group had a higher mean bone quantity index (p < 0.05) and micro-CT image analysis showed that experimental sides had a greater mean total regenerated bone volume and surface area than the control sides (p < 0.05). Histologic evaluations obtained at 6 and 12 weeks revealed distinctly greater granule resorption and new bone formation in the experimental group. This in vivo study demonstrates that a combination of autologous osteoblasts and small-sized, allogeneic cancellous bone granules leads to more rapid bone regeneration than autologous MSCs and small-sized, allogeneic cancellous bone granules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Ahlmann E, Patzakis M, Roidis N (2002) Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg 84A:716–720

    Google Scholar 

  • Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA (1996) Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res 329:300–309

    Article  PubMed  Google Scholar 

  • Bruder SP, Fink DJ, Caplan AI (1994) Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 56:283–294

    Article  PubMed  CAS  Google Scholar 

  • Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  PubMed  CAS  Google Scholar 

  • Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV (1996) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16:381–390

    Google Scholar 

  • Gazdag AR, Lane JM, Glaser D, Foster RA (1995) Alternatives to autogenous bone graft: efficacy and indications. J Am Acad Orthop Surg 3:1–8

    PubMed  Google Scholar 

  • Herold HZ, Hurvitz A, Tadmor A (1971) The effect of growth hormone on the healing of experimental bone defects. Acta Orthop Scand 42:377–384

    Article  Google Scholar 

  • Kitoh H, Kitakoji T, Tsuchiya H, Mitsuyama H, Nakamura H, Katoh M, Ishiguro N (2004) Transplantation of marrow-derived mesenchymal stem cells and platelet-rich plasma during distraction osteogenesis—a preliminary result of three cases. Bone 35:892–898

    Article  PubMed  Google Scholar 

  • Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, Boyde A, Ruspantini I, Chistolini P, Rocca M, Giardino R, Cancedda R, Quarto R (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49:328–337

    Article  PubMed  CAS  Google Scholar 

  • Lee SU, Chung YG, Oh IH, Kim JM, Kim YS, Lee YG, Baek MH, Kim SE (2010) Bone regeneration using mesenchymal stem cells loaded onto allogeneic cancellous bone granules tissue engineering and regenerative medicine. Tissue Eng Regen Med 7:401–409

    Google Scholar 

  • Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  PubMed  CAS  Google Scholar 

  • Petite H, Viateau V, Bensaid W, Meunier A, De Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18:929–930

    Article  Google Scholar 

  • Pruss A, Perka C, Degenhardt P, Maronna U, Buttner-Janz K, Paul B, Müller K, Klumpp C, Bruck JC, Von Versen R (2002) Clinical efficacy and compatibility of allogeneic avital tissue transplants sterilized with a peracetic acid/ethanol mixture. Cell Tissue Bank 3:235–243

    Article  PubMed  CAS  Google Scholar 

  • Schlegel KA, Donath K, Rupprecht S, Falk S, Zimmermann R, Felszeghy E, Wiltfang J (2004) De novo bone formation using bovine collagen and platelet-rich plasma. Biomaterials 25(23):5387–5393

    Article  PubMed  CAS  Google Scholar 

  • Seebach C, Schultheiss J, Wilhelm K, Frannk J, Henrich D (2010) Comparison of six bone-graft substitutes regarding to cell seeding efficiency, metabolism and growth behaviour of human mesenchymal stem cells (MSC) in vitro. Injury 41:731–738

    Article  PubMed  Google Scholar 

  • Steinwachs M (2009) New technique for cell-seeded collagen-matrix-supported autologous chondrocyte transplantation. Arthroscopy 25:208–211

    Article  PubMed  Google Scholar 

  • Wiltfang J, Kloss FR, Kessler P, Nkenke E, Schultze-Mosgau S, Zimmermann R, Schlegel KA (2004) Effects of platelet-rich plasma on bone healing in combination with autogenous bone and bone substitutes in critical-size defects, An animal experiment. Clin Oral Implants Res 15:187–193

    Article  PubMed  Google Scholar 

  • Yamanouchi K, Satomura K, Gotoh Y, Kitaoka E, Tobiume S, Kume K, Nagayama M (2001) Bone formation by transplanted human osteoblasts cultured within collagen sponge with dexamethasone in vitro. J Bone Miner Res 16:857–867

    Article  PubMed  CAS  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  PubMed  CAS  Google Scholar 

Download references

Competing interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Guk Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SJ., Chung, YG., Lee, YK. et al. Comparison of the osteogenic potentials of autologous cultured osteoblasts and mesenchymal stem cells loaded onto allogeneic cancellous bone granules. Cell Tissue Res 347, 303–310 (2012). https://doi.org/10.1007/s00441-011-1272-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-011-1272-9

Keywords

Navigation