Skip to main content
Log in

Photoreceptor projection and termination pattern in the lamina of gonodactyloid stomatopods (mantis shrimp)

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The apposition compound eyes of gonodactyloid stomatopods are divided into a ventral and a dorsal hemisphere by six equatorial rows of enlarged ommatidia, the mid-band (MB). Whereas the hemispheres are specialized for spatial vision, the MB consists of four dorsal rows of ommatidia specialized for colour vision and two ventral rows specialized for polarization vision. The eight retinula cell axons (RCAs) from each ommatidium project retinotopically onto one corresponding lamina cartridge, so that the three retinal data streams (spatial, colour and polarization) remain anatomically separated. This study investigates whether the retinal specializations are reflected in differences in the RCA arrangement within the corresponding lamina cartridges. We have found that, in all three eye regions, the seven short visual fibres (svfs) formed by retinula cells 1–7 (R1–R7) terminate at two distinct lamina levels, geometrically separating the terminals of photoreceptors sensitive to either orthogonal e-vector directions or different wavelengths of light. This arrangement is required for the establishment of spectral and polarization opponency mechanisms. The long visual fibres (lvfs) of the eighth retinula cells (R8) pass through the lamina and project retinotopically to the distal medulla externa. Differences between the three eye regions exist in the packing of svf terminals and in the branching patterns of the lvfs within the lamina. We hypothesize that the R8 cells of MB rows 1–4 are incorporated into the colour vision system formed by R1–R7, whereas the R8 cells of MB rows 5 and 6 form a separate neural channel from R1 to R7 for polarization processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

epl1:

Outer lamina stratum

epl2:

inner lamina stratum

lvf:

long visual fibre

MB:

mid-band

MPA:

axial monopolar cell

MPL:

lateral monopolar cell

RCA:

retinula cell axon

R1–R8:

retinula cells 1–8

svf:

short visual fibre

References

  • Armett-Kibel C, Meinertzhagen IA (1977) Cellular and synaptic organisation in the lamina of the dragonfly Sympetrum rubicundulum. Proc R Soc Lond [Biol] 196:385–413

    Google Scholar 

  • Armett-Kibel C, Meinertzhagen IA (1985) The long visual fibers of the dragonfly optic lobe: their cells of origin and lamina connections. J Comp Neurol 242:459–474

    CAS  PubMed  Google Scholar 

  • Ball E, Kao L, Stone R, Land M (1986) Eye structure and optics in the pelagic shrimp Acetes sibolgae (Decapoda, Natantia, Sergestidae) in relation to light–dark adaptation and natural history. Philos Trans R Soc Lond Biol 313:251–270

    Google Scholar 

  • Bernard GD, Wehner R (1977) Functional similarities between polarization vision and color vision. Vis Res 17:1019–1028

    Article  CAS  PubMed  Google Scholar 

  • Boschek CB (1971) On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. Z Zellforsch 118:369–409

    Article  CAS  PubMed  Google Scholar 

  • Caldwell RL, Dingle H (1975) Ecology and evolution of agonistic behavior in stomatopods. Naturwissenschaften 62:214–222

    Article  Google Scholar 

  • Caldwell RL, Dingle H (1976) Stomatopods. Sci Am 234:80–89

    PubMed  Google Scholar 

  • Chiao C-C, Cronin TW, Marshall NJ (2000) Eye design and color signaling in a stomatopod crustacean Gonodactylus smithii. Brain Behav Evol 56:107–122

    Article  CAS  PubMed  Google Scholar 

  • Cronin TW, Marshall NJ (1989) Multiple spectral classes of photoreceptors in the retinas of gonodactyloid stomatopod crustaceans. J Comp Physiol [A] 166:261–275

    Google Scholar 

  • Cronin TW, Marshall NJ (2004) The unique visual world of the mantis shrimp. In: Prete FR (ed) Complex worlds from simpler nervous systems. A Bradford book. MIT, Cambridge, pp 239–268

    Google Scholar 

  • Cronin TW, Marshall NJ, Quinn CA, King CA (1994a) Ultraviolet photoreception in mantis shrimp. Vis Res 34:1443–1449

    Article  CAS  PubMed  Google Scholar 

  • Cronin TW, Marshall NJ, Caldwell RL, Shashar N (1994b) Specialisation of retinal function in the compound eyes of mantis shrimps. Vis Res 34:2639–2656

    Article  CAS  PubMed  Google Scholar 

  • Cummins D, Goldsmith TH (1981) Cellular identification of the violet receptor in the crayfish eye. J Comp Physiol 142:199–202

    Article  Google Scholar 

  • Glantz MR (1996) Polarization sensitivity in the crayfish lamina monopolar neurons. J Comp Physiol [A] 178:413–425

    Google Scholar 

  • Glantz MR (2001) Polarization analysis in the crayfish visual system. J Exp Biol 204:2383–2390

    CAS  Google Scholar 

  • Goldsmith TH, Fernandez HR (1968) Comparative studies of crustacean spectral sensitivity. Z Vgl Physiol 60:156–175

    Article  Google Scholar 

  • Hanström B (1928) Vergleichende Anatomie des Nervensystems der wirbellosen Tiere. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hardie RC, Franceschini N, Ribi W, Kirschfeld K (1981) Distribution and properties of sex-specific photoreceptors in the fly Musca domestica. J Comp Physiol 145:139–152

    Article  Google Scholar 

  • Horch K, Salmon M, Forward R (2002) Evidence for a two pigment visual system in the fiddler crab, Uca thayeri. J Comp Physiol [A] 188:493–499

    CAS  Google Scholar 

  • Hyatt GW (1975) Physiological and behavioural evidence for colour discrimination by fiddler crabs, Brachyura, Ocypodidae, genus Uca. In: Vernberg FJ (ed) Physiological ecology of estuarine organisms. University of Carolina, Columbia, pp 333–365

    Google Scholar 

  • Kleinlogel S, Marshall NJ, Horwood JM, Land MF (2003) Neuroarchitecture of the color and polarization vision system of the stomatopod Haptosquilla. J Comp Neurol 467:326–342

    Article  PubMed  Google Scholar 

  • Kunze P (1968) Die Orientierung der Retinulazellen im Auge von Ocypode. Z Zellforsch 90:454–462

    Article  CAS  PubMed  Google Scholar 

  • Land MF, Marshall NJ, Brownless D, Cronin TW (1990) The eye-movements of the mantis shrimp Odontodactylus scyllarus (Crustacea: Stomatopoda). J Comp Physiol [A] 167:155–166

    Google Scholar 

  • Marshall NJ (1988) A unique colour and polarization vision system in mantis shrimps. Nature 333:557–560

    Google Scholar 

  • Marshall NJ, Land MF (1993a) Some optical features of the eyes of stomatopods. I. Eye shape, optical axis and resolution. J Comp Physiol [A] 173:565–582

    Google Scholar 

  • Marshall NJ, Land MF (1993b) Some optical features of the eyes of stomatopods. II. Ommatidial design, sensitivity and habitat. J Comp Physiol [A] 173:583–594

    Google Scholar 

  • Marshall NJ, Oberwinkler J (1999) The colourful world of the mantis shrimp. Nature 401:873–874

    Google Scholar 

  • Marshall NJ, Land MF, Cronin TW (1989) The structure and function of the mid-band in the eyes of stomatopod crustaceans. J Mar Biol Assoc UK 69:735

    Google Scholar 

  • Marshall NJ, Land MF, King CA, Cronin TW (1991a) The compound eyes of mantis shrimps (Crustacea, Hoplocarida, Stomatopoda). II. Colour pigments in the eyes of stomatopod crustaceans: polychromatic vision by serial and lateral filtering. Philos Trans R Soc Lond Biol 334:57–84

    Google Scholar 

  • Marshall NJ, Land MF, King CA, Cronin TW (1991b) The compound eyes of mantis shrimps (Crustacea, Hoplocarida, Stomatopoda). I. Compound eye structure: the detection of polarised light. Philos Trans R Soc Lond Biol 334:33–56

    Google Scholar 

  • Marshall NJ, Jones JP, Cronin TW (1996) Behavioural evidence for colour vision in stomatopod crustaceans. J Comp Physiol [A] 179:473–481

    Google Scholar 

  • Marshall NJ, Oberwinkler J, Cronin TW, Land MF (1998) The 16 sensitivities of the stomatopod eye—what are they for? 26th Neurobiology Conference, Göttingen

  • Menzel R, Blakers M (1975) Colour receptors in the bee eye—morphology and spectral sensitivity. J Comp Physiol 108:11–33

    Article  Google Scholar 

  • Meyer EP (1979) Golgi–EM-study of first and second order neurons in the visual system of Cataglyphis bicolor Fabricius (Hymenoptera, Formicidae). Zoomorphology 92:115–139

    Article  Google Scholar 

  • Nässel DR (1975) The organization of the lamina ganglionaris of the prawn, Pandalus borealis (Kroyer). Cell Tissue Res 163:445–464

    PubMed  Google Scholar 

  • Nässel DR (1977) Types and arrangements of neurons in the crayfish optic lamina. Cell Tissue Res 179:45–75

    PubMed  Google Scholar 

  • Nässel DR, Waterman TH (1977) Golgi EM evidence for visual information channelling in the crayfish lamina ganglionaris. Brain Res 130:556–563

    Article  PubMed  Google Scholar 

  • Nässel DR, Elofsson R, Odselius R (1978) Neuronal connectivity patterns in the compound eyes of Artemia salina and Daphina magna. Cell Tissue Res 190:435–457

    PubMed  Google Scholar 

  • Nilsson DE, Osorio D (1997) Homology and parallelism in arthropod sensory processing. Chapman and Hall, London

    Google Scholar 

  • Osorio D, Marshall NJ, Cronin TW (1997) Stomatopod photoreceptor spectral tuning as an adaptation for colour constancy in water. Vis Res 37:3299–3309

    Article  CAS  PubMed  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron–opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  CAS  PubMed  Google Scholar 

  • Ribi WA (1975) The neurons of the first optic ganglion of the bee (Apis melifera). Adv Anat Embryol Cell Biol 50:1–42

    CAS  PubMed  Google Scholar 

  • Ribi WA (1981) The first optic ganglion of the bee. VI. Synaptic fine structure and connectivity patterns of receptor cell axons and first order interneurons. Cell Tissue Res 215:443–464

    Article  CAS  PubMed  Google Scholar 

  • Rossel S (1989) Polarization sensitivity in compound eyes. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin Heidelberg New York, pp 298–316

    Google Scholar 

  • Sabra R, Glantz RM (1985) Polarisation sensitivity of crayfish photoreceptors is correlated with their termination sites in the lamina ganglionaris. J Comp Physiol 156:315–318

    Article  Google Scholar 

  • Schiff H (1987) Optical and neural pooling in visual processing in crustacea. Comp Biochem Physiol 88A:1–13

    Article  Google Scholar 

  • Schiff H, Abbott BC, Manning RB (1986) Optics, range-finding and neuroanatomy of the eye of a mantis shrimp, Squilla mantis (Linnaeus) (Crustacea; Stomatopoda; Squillidae). Smithsonian Contrib Zool 440:1–32

    Google Scholar 

  • Souza JD, Hertel H, Ventura DF, Menzel R (1992) Response properties of stained monopolar cells in the honeybee lamina. J Comp Physiol [A] 170:267–274

    Google Scholar 

  • Stavenga DG (1979) Pseudopupils of compound eyes. In: Autrum H (ed) Handbook of sensory physiology. Springer, Berlin Heidelberg New York, pp 225–313

    Google Scholar 

  • Stowe S, Ribi WA, Sandeman DC (1977) The organisation of the lamina ganglionaris of the crabs Scylla serrata and Leptograpsus variegatus. Cell Tissue Res 178:517–532

    Article  CAS  PubMed  Google Scholar 

  • Strausfeld NJ, Blest AD (1970) Golgi studies on insects. I. The optic lobes of Lepidoptera. Philos Trans R Soc Lond 258:81–134

    Google Scholar 

  • Strausfeld NJ, Nässel DR (1981) Neuroarchitecture of brain regions that subserve the compound eyes of crustacea and insects. In: Autrum H (ed) Handbook of sensory physiology. Springer, Berlin Heidelberg New York, pp 344–357

    Google Scholar 

  • Warrant EJ, McIntyre PD (1990) Limitations to resolution in superposition eyes. J Comp Physiol [A] 167:785–803

    Google Scholar 

  • Waterman TH (1981) Polarisation sensitivity. In: Autrum H (ed) Handbook of sensory physiology. Springer, Berlin Heidelberg New York, pp 283–469

    Google Scholar 

  • Waterman TH, Fernandez HR (1970) E-vector and wavelength discrimination by retinular cells of the crayfish Procambarus. Z Vgl Physiol 68:154–174

    Article  Google Scholar 

  • Wehner R (2001) Polarization vision—a uniform sensory capacity? Exp Biol 204:2589–2596

    CAS  Google Scholar 

  • Zeil J (1983) Sexual dimorphism in the visual system of flies: the free flight behaviour of male Bibionidae (Diptera). J Comp Physiol 150:395–412

    Article  Google Scholar 

  • Zufall F, Schmitt M, Menzel R (1989) Spectral and polarized light sensitivity of photoreceptors in the compound eye of the cricket (Gryllus bimaculatus). J Comp Physiol [A] 164:597–608

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. O. Ganeshina, Dr. N. Hart and Associate Professor S. Collin for constructive comments on the manuscript. We are grateful to R. Webb and R. Gould for their assistance with the electron microscope and to A. Chan for his valuable support with the histology. We also extend our thanks to the helpful staff of the Heron Island Research Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Kleinlogel.

Additional information

This research was supported by the Swiss National Science Foundation (PBSKB-104268/1), the Australian Research Council (LP0214956) and the American Air Force (AOARD/AFOSR) (F62562-03-P-0227).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleinlogel, S., Marshall, N.J. Photoreceptor projection and termination pattern in the lamina of gonodactyloid stomatopods (mantis shrimp). Cell Tissue Res 321, 273–284 (2005). https://doi.org/10.1007/s00441-005-1118-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-1118-4

Keywords

Navigation