, Volume 324, Issue 3, pp 353-360
Date: 01 Feb 2006

Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, are the major anions in the large intestinal lumen. They are produced from dietary fiber by bacterial fermentation and are known to have a variety of physiological and pathophysiological effects on the intestine. In the present study, we investigated the expression of the SCFA receptor, GPR43, in the rat distal ileum and colon. Expression of GPR43 was detected by reverse transcriptase/polymerase chain reaction (RT-PCR), Western blotting, and immunohistochemistry. mRNA for GPR43 was detected, by RT-PCR, in extracts of the whole wall and separated mucosa from the ileum and colon and from muscle plus submucosa from the ileum, but not from muscle plus submucosa preparations from the colon. We raised a rabbit antiserum against a synthesized fragment of rat GPR43; this was specific for rat GPR43. GPR43 protein was detected by Western blot analysis in extracts of whole wall and separated mucosa, but not in muscle plus submucosa extracts. By immunohistochemistry, GPR43 immunoreactivity was localized to enteroendocrine cells expressing peptide YY (PYY), whereas 5-hydroxytryptamine (5-HT)-immunoreactive (IR) enteroendocrine cells were not immunoreactive for GPR43. Mast cells of the lamina propria expressing 5-HT were also GPR43-IR. The results of the present study suggest that the PYY-containing enteroendocrine cells and 5-HT-containing mucosal mast cells sense SCFAs via the GPR43 receptor. This is consistent with physiological data showing that SCFAs stimulate the release of PYY and 5-HT from the ileum and colon.

This study was supported by the Promotion of Health and Nutrition from the Danone Institute, by an AstraZeneca Research Grant, and by the Australian Research Council (grant #DP0557307).